Preclinical assessment of anti-tumor activity and immune response in syngeneic tumor models

2016 ◽  
Vol 69 ◽  
pp. S97
Author(s):  
M. Franklin ◽  
M. Thayer ◽  
D. Draper ◽  
D. Saims ◽  
S. Wise
2009 ◽  
Vol 83 (8) ◽  
pp. 3450-3462 ◽  
Author(s):  
Michael Robinson ◽  
Betty Li ◽  
Ying Ge ◽  
Derek Ko ◽  
Satya Yendluri ◽  
...  

ABSTRACT Oncolytic adenoviral vectors that express immunostimulatory transgenes are currently being evaluated in clinic. Preclinical testing of these vectors has thus far been limited to immunodeficient xenograft tumor models since human adenoviruses do not replicate effectively in murine tumor cells. The effect of the immunostimulatory transgene on overall virus potency can therefore not be readily assessed in these models. Here, a model is described that allows the effective testing of mouse armed oncolytic adenovirus (MAV) vectors in immunocompetent syngeneic tumor models. These studies demonstrate that the MAV vectors have a high level of cytotoxicity in a wide range of murine tumor cells. The murine oncolytic viruses were successfully armed with murine granulocyte-macrophage colony-stimulating factor (mGM-CSF) by a novel method which resulted in vectors with a high level of tumor-specific transgene expression. The mGM-CSF-armed MAV vectors showed an improved level of antitumor potency and induced a systemic antitumor immune response that was greater than that induced by unarmed parental vectors in immunocompetent syngeneic tumor models. Thus, the oncolytic MAV-1 system described here provides a murine homolog model for the testing of murine armed oncolytic adenovirus vectors in immunocompetent animals. The model allows evaluation of the impact of virus replication and the host immune response on overall virus potency and enables the generation of translational data that will be important for guiding the clinical development of these viruses.


2017 ◽  
Author(s):  
Christian Gieffers ◽  
David Richards ◽  
Jaromir Sykora ◽  
Mauricio Redondo-Müller ◽  
Meinolf Thiemann ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. e001691
Author(s):  
Kellsye P Fabian ◽  
Michelle R Padget ◽  
Rika Fujii ◽  
Jeffrey Schlom ◽  
James W Hodge

BackgroundDifferent types of tumors have varying susceptibility to immunotherapy and hence require different treatment strategies; these cover a spectrum ranging from ‘hot’ tumors or those with high mutational burden and immune infiltrates that are more amenable to targeting to ‘cold’ tumors that are more difficult to treat due to the fewer targetable mutations and checkpoint markers. We hypothesized that an effective anti-tumor response requires multiple agents that would (1) engage the immune response and generate tumor-specific effector cells; (2) expand the number and breadth of the immune effector cells; (3) enable the anti-tumor activity of these immune cells in the tumor microenvironment; and (4) evolve the tumor response to widen immune effector repertoire.MethodsA hexatherapy combination was designed and administered to MC38-CEA (warm) and 4T1 (cool) murine tumor models. The hexatherapy regimen was composed of adenovirus-based vaccine and IL-15 (interleukin-15) superagonist (N-803) to engage the immune response; anti-OX40 and anti-4-1BB to expand effector cells; anti-PD-L1 (anti-programmed death-ligand 1) to enable anti-tumor activity; and docetaxel to promote antigen spread. Primary and metastatic tumor growth inhibition were measured. The generation of anti-tumor immune effector cells was analyzed using flow cytometry, ELISpot (enzyme-linked immunospot), and RNA analysis.ResultsThe MC38-CEA and 4T1 tumor models have differential sensitivities to the combination treatments. In the ‘warm’ MC38-CEA, combinations with two to five agents resulted in moderate therapeutic benefit while the hexatherapy regimen outperformed all these combinations. On the other hand, the hexatherapy regimen was required in order to decrease the primary and metastatic tumor burden in the ‘cool’ 4T1 model. In both models, the hexatherapy regimen promoted CD4+ and CD8+ T cell proliferation and activity. Furthermore, the hexatherapy regimen induced vaccine-specific T cells and stimulated antigen cascade. The hexatherapy regimen also limited the immunosuppressive T cell and myeloid derived suppressor cell populations, and also decreased the expression of exhaustion markers in T cells in the 4T1 model.ConclusionThe hexatherapy regimen is a strategic combination of immuno-oncology agents that can engage, expand, enable, and evolve the immune response and can provide therapeutic benefits in both MC38-CEA (warm) and 4T1 (cool) tumor models.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A224-A225
Author(s):  
Mary Woodall-Jappe ◽  
A Raghav Chari ◽  
Anil Namboodiripad ◽  
Chandrasekhar Goda

BackgroundRegulatory T cell (Tregs) inhibit activity of anti-tumor T cells, and have been shown to limit checkpoint inhibitor effectiveness. Depletion of Tregs seems desirable during immunotherapy, but chronic Treg depletion with antibody therapies can lead to serious autoimmune adverse events. Compared to antibodies, the fusion protein E7777 (IL-2/diphtheria toxin) has a relatively short half-life in circulation, which allows for transient and selective Treg depletion. The potential therapeutic benefit of combining E7777 with anti-PD-1 was tested in syngeneic solid tumor models.MethodsCT26 colon and H22 liver cancer tumors were implanted subcutaneously in immunocompetent BALB/c mice. E7777 (2.5 mcg/mouse, i.v.) was given on a Q7Dx3 schedule. Anti-murine PD-1 was given (100 mcg/mouse, i.v.) Q4Dx5. Groups of 16 mice received each agent as monotherapy or in combinations. Sequencing of combination administration was also varied: Group 4 started treatment on the same day; Group 5 received E7777 2 days prior to start of anti-PD-1; Group 6 received anti-PD-1 first. Tumor growth was compared across all groups. In survival studies, mice were treated for 3 weeks and observed with twice weekly tumor measurements. In other experiments, tumors, tumor-draining lymph nodes, and spleens were examined by IHC and by flow cytometry of immune cells from dissociated tissues at defined points, for immune biomarkers.ResultsFigure 1 shows additive benefit from the E7777 + anti-PD-1 combinations over either monotherapy. Most importantly, figure 2 and table 1 show significantly enhanced overall survival from a 3 week course of combinations compared to either agent alone (p<0.005) or to vehicle controls (p<0.000001). There was no clear distinction among different sequencing regimens. Benefit correlated with enhanced CD8:Treg ratios in tumors.Abstract 208 Figure 1Tumor growth in s.c. syngeneic solid tumors. N=16/groupAbstract 208 Figure 2Overall survival in s.c. syngeneic models. N=16/groupAbstract 208 Table 1Calculated median survivalConclusionsDepletion of Tregs by E7777 significantly increased anti-tumor activity and durably extended overall survival compared to treatment with anti-PD-1 alone in syngeneic solid tumor models. Clinical studies of a combination of the two agents are planned.Ethics ApprovalAll studies were conducted at Crown Bio, and were approved by the Crown Bio IACUC.


2021 ◽  
Author(s):  
Mi Young Cha ◽  
Youn Kyung Houh ◽  
Yun Yeon Kim ◽  
Hyunuk Kim ◽  
Joo-Yeon Chung ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1959-1959
Author(s):  
Jeong A Park ◽  
Hong fen Guo ◽  
Hong Xu ◽  
Nai-Kong V. Cheung

Background Ex Vivo Armed T-cells (EVAT) carrying zeptomoles (10-21M) of T-cell engaging GD2-bispecific antibody (GD2-EVAT) or HER2-bispecific antibodies (HER2-EVAT) have potent anti-tumor activity against GD2(+) and/or HER2(+) solid tumors. Strategies to further optimize this approach are highly relevant. PD-1 is a key immune checkpoint receptor expressed mainly by activated T-cells and mediates immune suppression by binding to its ligands PD-L1 or PD-L2. Upregulation of PD-L1 has been found in many cancers including osteosarcoma and associated with aggressive disease and poor outcome. While the use of immune checkpoint inhibitors (ICIs) seems logical, the ideal timing when combined with T-cell engaging bispecific antibody (T-BsAb) or EVAT has yet to be defined. Here, we described the effects of anti-PD-1 or anti-PD-L1 antibodies on GD2-EVAT or HER2-EVAT therapy and explored the impact of its timing in the treatment of osteosarcoma which is GD2(+), HER2(+) and PD-L1(+). Methods GD2-BsAb and HER-BsAb were built using the IgG(L)-scFv format (Can Immunol Res, 3:266, 2015, Oncoimmunology, PMID:28405494). T-cells from healthy volunteer donors were isolated, and cultured ex vivo in the presence of CD3/CD28 beads plus 30 IU/mL of interleukin 2 (IL-2). Between day 7 and day 14, activated T-cells (ATCs) were harvested and armed for 20 minutes at room temperature with GD2-BsAb or HER2-BsAb. In vivo anti-tumor activity against GD2(+), HER2(+), and PD-L1(+) osteosarcoma cell line xenografts was tested in BALB-Rag2-/-IL-2R-γc-KO mice. Anti-human PD-1 antibody (pembrolizumab, anti-PD-1) or anti-human PD-L1 antibody (atezolizumab, anti-PD-L1) were tested for synergy with GD2-EVAT or HER2-EVAT therapy. Results The PD-1 expression increased among T-cells that circulated in the blood, that infiltrated the spleen or the tumor after EVAT therapy. While anti-PD-L1 combination therapy with GD2-EVAT or HER2-EVAT improved anti-tumor response against osteosarcoma (P=0.0123 and P=0.0004), anti-PD-1 did not (all P>0.05). The addition of anti-PD-L1 significantly increased T-cell survival in blood and T-cell infiltration of tumor when compared to GD2-EVAT or HER2-EVAT alone (all P<0.0001). Treatment of GD2-EVAT or anti-PD-L1 plus GD2-EVAT downregulated GD2 expression on tumors, but anti-PD-1 plus GD2-EVAT did not. For the next step we tested the impact of different combination schedules of ICIs on GD2-EVAT therapy. Concurrent anti-PD-1 (6 doses along with GD2-EVAT therapy) interfered with GD2-EVAT, while sequential anti-PD-1 (6 doses after GD2-EVAT) did not make a significant effect (P>0.05). On the other hand, while the concurrent use of anti-PD-L1 did not show benefit on GD2-EVAT, sequentially administered anti-PD-L1 produced a significant improvement in tumor control when compared to anti-PD-L1 or GD2-EVAT alone (P=0.002 and P=0.018). When anti-PD-L1 treatment was extended (12 doses after GD2-EVAT), the anti-tumor effect was most pronounced compared to GD2-EVAT alone (P <0.0001), which translated into improved survival (P=0.0057). These in vivo anti-tumor responses were associated with increased CD8(+) tumor infiltrating lymphocytes (TILs) of tumor. Conclusion In the arming platform, large numbers of target-specific T-cells can be generated, and this EVAT therapy is a highly effective cellular treatment with high potency in preclinical models. In addition, the advantage of ex vivo cytokine release following T-cell arming and activation could reduce or avoid life threatening cytokine storm if such activation was to proceed in vivo. Adoptive T-cell therapy induced immune response upregulates the inhibitory immune checkpoint PD-1/PD-L1 pathway, and combination treatment with anti-PD-L1 antibody, especially when combined as sequential therapy and continuously treated, significantly improved anti-tumor effect of EVAT, partly through increase in CD8(+) TILs infiltration. Disclosures Xu: MSK: Other: co-inventors in patents on GD2 bispecific antibody and HER2 bispecific antibody. Cheung:Ymabs: Patents & Royalties, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document