Carbon dioxide (CO2) storage and sequestration of land cover in the Leyte Geothermal Reservation

2002 ◽  
Vol 25 (2) ◽  
pp. 307-315 ◽  
Author(s):  
Rodel D Lasco ◽  
Joveno S Lales ◽  
Ma.Theresa Arnuevo ◽  
Ina Q Guillermo ◽  
Agnes C de Jesus ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Nadeem Ahmed Sheikh ◽  
Irfan Ullah ◽  
Muzaffar Ali

Carbon dioxide (CO2) storage in natural rocks is an important strategy for reducing and capturing greenhouse gas emissions in the atmosphere. The amount of CO2 stored in a natural reservoir such as natural rocks is the major challenge for any economically viable CO2 storage. The intricate nature of the porous media and the estimates of the replacement of residing aqueous media with the invading CO2 is the challenge. The current study uses MATLAB to construct a similar porous network model for simulation of complex porous storage. The model is designed to mimic the overall properties of the natural porous media in terms of permeability, porosity and inter-pore connectivity. Here a dynamic pore network is simulated and validated, firstly in the case of a porous network with one fluid invading empty network. Subsequently, the simulations for an invading fluid (CO2) capturing the porous media with filled aqueous brine solution are also carried out in a dynamic fashion. This resembles the actual storage process of CO2 sequestration in natural rocks. While the sensitivity analysis suggests that the differential pressure and porosity have a direct effect on saturation, increasing differential pressure or porosity increases the saturation of CO2 storage. The results for typically occurring rocks in Pakistan are also studies and related with the findings of the study.


2017 ◽  
Vol 114 ◽  
pp. 6950-6956 ◽  
Author(s):  
Ken Allinson ◽  
Dan Burt ◽  
Lisa Campbell ◽  
Lisa Constable ◽  
Mark Crombie ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1278
Author(s):  
Jaeyong Sim ◽  
Sang-Hyeok Kim ◽  
Jin-Yong Kim ◽  
Ki Bong Lee ◽  
Sung-Chan Nam ◽  
...  

Today, climate change caused by global warming has become a worldwide problem with increasing greenhouse gas (GHG) emissions. Carbon capture and storage technologies have been developed to capture carbon dioxide (CO2); however, CO2 storage and utilization technologies are relatively less developed. In this light, we have reported efficient CO2 decomposition results using a nonperovskite metal oxide, SrFeCo0.5Ox, in a continuous-flow system. In this study, we report enhanced efficiency, reliability under isothermal conditions, and catalytic reproducibility through cyclic tests using SrFeO3−δ. This ferrite needs an activation process, and 3.5 vol% H2/N2 was used in this experiment. Activated oxygen-deficient SrFeO3−δ can decompose CO2 into carbon monoxide (CO) and carbon (C). Although SrFeO3−δ is a well-known material in different fields, no studies have reported its use in CO2 decomposition applications. The efficiency of CO2 decomposition using SrFeO3−δ reached ≥90%, and decomposition (≥80%) lasted for approximately 170 min. We also describe isothermal and cyclic experimental data for realizing commercial applications. We expect that these results will contribute to the mitigation of GHG emissions.


2003 ◽  
Vol 43 (1) ◽  
pp. 637 ◽  
Author(s):  
N.M. Watson ◽  
N. Zwingmann ◽  
N.M. Lemon ◽  
P.R. Tingate

The study of natural carbon dioxide (CO2) accumulations, such as those found in the onshore Otway Basin, is necessary for the validation of underground long-term storage technology as an option for decreasing greenhouse gas emissions.The investigation of natural CO2 occurrences is being investigated as part of the Geological Disposal of Carbon Dioxide (GEODISC) research program. This study identifies the effects of CO2 on reservoir rock’s mineralogy through time as well as its porosity and permeability. The Otway Basin CO2 accumulations display variations in reservoir type, CO2 concentration and time of injection. A range of typical reservoirs types for the CO2 accumulations occurs in the Otway Basin, including feldspathic litharenites, subfeldsarenite and quartz arenite. CO2 concentrations in the Otway Basin vary greatly in the accumulations studied, ranging from 10 mol% within the Port Campbell Field to 99 mol % in the Caroline Field. The source of the CO2 is degassing of the deep-seated magmas of the Newer Volcanics, with CO2 influx occurring between ~2 million to as recently as 5,000 years ago. This study investigated three areas of the Otway Basin;Penola Trough—Ladbroke Grove, Katnook (non-CO2)Port Campbell Embayment—Boggy Creek, Langley, Port Campbell; andGambier Sub-Basin—CarolineDue to their close proximity and similar geological history prior to CO2 influx, the Ladbroke Grove-Katnook gas accumulations are particularly useful for examining differences between a CO2-rich (Ladbroke Grove) and a CO2-absent field (Katnook) and for developing a post- CO2 diagenetic history. Variation in grain size and CO2 concentration affects the degree of reaction of CO2 with the reservoir rock. Petrology and formation water chemistry of these fields indicate that CO2 has modified the rock properties. In all CO2-rich reservoirs examined (>10 mol % CO2), dissolution and alteration of lithic and felsic framework grains has occurred (e.g. albite dissolution). Clays and cements throughout most of the Otway Basin CO2 accumulations are modified to minerals more stable in the changed gas compositions (e.g. chlorite to kaolin). The change in mineralogy after the recent CO2 influx shows that the Pretty Hill Formation with high amounts of reactive minerals and smaller grain size is an effective reservoir unit for mineral storage of CO2. Longterm storage in the Waarre Sandstone quartz-rich reservoirs also displays the effectiveness of CO2 storage in pore space.This study of natural accumulations of CO2 has demonstrated that geological storage of CO2 is a viable option. Understanding of the mineral reactions involved with CO2 in reservoir rock is vital for selection of storage sites and modelling the behaviour of CO2 in the subsurface.


2018 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Dody Hidayat

Kebakaran dapat terjadi dimana saja salah satunya dapat terjadi di alat transportasi air yakni kapal. Kebakaran selalu menyebabkan hal-hal yang tidak diinginkan baik kerugian material maupun ancaman keselamatan jiwa manusia. Seiring dari kejadian tersebut musibah kecelakaan kapal yang disebabkan oleh bahaya kebakaran sangatlah mungkin terjadi. Salah satu yang dapat mencegah kejadian kebakaran pada kapal haruslah dapat mendeteksi dini kebakaran tersebut. Untuk mendeteksi dini terjadinya kebakaran dikapal maka dirancanglah sebuah alat proteksi kebakaran otomatisberbasis adruino. Dimana Arduino merupakan board yang memiliki sebuah mikrokontroller sebagai  otak kendali sistem. Sistem otomatisasi atau controller tidak akan terlepas dengan apa yang disebut  dengan ‘sensor’. Sensor adalah sebuah alat untuk mendeteksi atau mengukut sesuatu yang digunakan untuk mengubah variasi mekanis, magnetis, panas, sinar dan kimia menjadi tegangan dan arus listrik. sistem yang dirancang ini dilengkapi dengan beberapa sensor diantaranya adalah sensor apiUV-Tron R2868, sensor asap MQ-2 dan kemudian sensor suhuDS18B20. Mikrokontroller sebagai pengendali akan merespon input yang berupa sensor tersebut ketika data yang dibaca oleh sensor mendeteksikebakaran diantaranya mendeteksi adanya asap, kemudian api dan suhu. Sebagai output dari sistem berupa racun api (fire extinguisher)dimana kandungan yang ada pada racun api tersebut berupa Dry Chemical Powder dan Carbon Dioxide (CO2) yang fungsinya digunakan untuk memadamkan api serta dilengkapi buzzer sebagai alarm peringatan jika terjadi kebakaran. 


Sign in / Sign up

Export Citation Format

Share Document