Production of citric acid from molasses integrated with in-situ product separation by ion-exchange resin adsorption

2000 ◽  
Vol 75 (3) ◽  
pp. 231-234 ◽  
Author(s):  
Wang Jianlong ◽  
Wen Xianghua ◽  
Zhou Ding
1968 ◽  
Vol 35 (2) ◽  
pp. 257-268 ◽  
Author(s):  
R. F. Glascock ◽  
H. S. Hall ◽  
S. F. Suffolk ◽  
D. T. W. Bryant

SummaryA pilot plant with a capacity of 2300 1./5 h day for the removal of cationic fission products from milk is described. The process involves the acidification of the milk with citric acid to pH 5.25 and its passage through an ion exchange resin charged with the ions of Ca, K, Na and Mg in the same proportions as those in which they occur in milk. The effluent milk is neutralized with potassium hydroxide. At the end of the day the plant and resin bed are washed and sterilized.Two resin beds are provided and are used on alternate days, one being washed and regenerated while the other is in use. Regeneration is carried out with a solution which removes radioactive cations and restores the resin bed to its original ionic composition.Bacteriological tests show that the method of cleaning both plant and resin bed is satisfactory.Conclusions are drawn as to a suitable design for a larger scale plant.


2000 ◽  
Vol 31 (3-4) ◽  
pp. 543-546 ◽  
Author(s):  
Nelson Thiffault ◽  
Robert Jobidon ◽  
Carol De Blois ◽  
Alison D. Munson

Soil Research ◽  
1994 ◽  
Vol 32 (6) ◽  
pp. 1389 ◽  
Author(s):  
K Sakadevan ◽  
MJ Hedley ◽  
AD Mackay

This study describes the construction, installation and evaluation of an in situ mini-lysimeter with a removable ion exchange resin trap for measuring nutrient losses by leaching from grazed pastures. The resin trap efficiently removed solutes from simulated drainage water at a flow rate of 14 mm h-1. Over 88% of each of the solutes was removed from synthetic nutrient solution containing 1.65 mM nitrate-N, 1.65 mM ammonium-N, 0.25 mM sulfate-S (SO2-4-S) and 0.6 mM potassium. In a further test of the system, sulfate leached in simulated rainstorm events from two undisturbed soil cores, taken from legume based pastures of contrasting superphosphate (SSP) fertilizer history following 495 mm of simulated rainfall, was all recovered using the resin trap. Seven times more SO2-4 (21.2 kg S ha-1) was leached and recovered from the resin trap of the core collected from the high fertility (HF, 375 kg SSP ha-1 year-1) site than from the low fertility (LF, 125 kg SSP ha-1 year-1) site (3.1 kg S ha-1). As part of the field evaluation of the technique, lysimeters with resin traps were placed in the field at four sites (8 lysimeters/site) contrasting in fertilizer history, landslope, and dung and urine return. Two additional lysimeters with drainage collection reservoirs (vessels) and eight soil solution samplers were placed on each site to collect drainage water and soil solution. The amount of SO2-4 present in drainage water was more closely related (1:1, R2 = 0.861) to the amount of SO2-4 collected by the resin traps over a period of 9 months than estimates made using soil solution samplers (1:1, R2 = 0.829). The advantages of the resin trap technique over alternative methods for estimating SO4-S leaching losses from field soils are discussed, as are applications of the technique for studying nutrient losses and cycling in grazed pastures.


2022 ◽  
Vol 422 ◽  
pp. 126960
Author(s):  
Chen Liu ◽  
Jenna Chu ◽  
Natalie L. Cápiro ◽  
John D. Fortner ◽  
Kurt D. Pennell

Sign in / Sign up

Export Citation Format

Share Document