scholarly journals Inhibition of Sonic hedgehog signaling in vivo results in craniofacial neural crest cell death

1999 ◽  
Vol 9 (22) ◽  
pp. 1304-1314 ◽  
Author(s):  
Sara C. Ahlgren ◽  
Marianne Bronner-Fraser
Development ◽  
2001 ◽  
Vol 128 (24) ◽  
pp. 4993-5004
Author(s):  
Nathalie Spassky ◽  
Katharina Heydon ◽  
Arnaud Mangatal ◽  
Alexandar Jankovski ◽  
Christelle Olivier ◽  
...  

Most studies on the origin of oligodendrocyte lineage have been performed in the spinal cord. By contrast, molecular mechanisms that regulate the appearance of the oligodendroglial lineage in the brain have not yet attracted much attention. We provide evidence for three distinct sources of oligodendrocytes in the mouse telencephalon. In addition to two subpallial ventricular foci, the anterior entopeduncular area and the medial ganglionic eminence, the rostral telencephalon also gives rise to oligodendrocytes. We show that oligodendrocytes in the olfactory bulb are generated within the rostral pallium from ventricular progenitors characterized by the expression of Plp. We provide evidence that these Plp oligodendrocyte progenitors do not depend on signal transduction mediated by platelet-derived growth factor receptors (PDGFRs), and therefore propose that they belong to a different lineage than the PDGFRα-expressing progenitors. Moreover, induction of oligodendrocytes in the telencephalon is dependent on sonic hedgehog signaling, as in the spinal cord. In all these telencephalic ventricular territories, oligodendrocyte progenitors were detected at about the same developmental stage as in the spinal cord. However, both in vivo and in vitro, the differentiation into O4-positive pre-oligodendrocytes was postponed by 4-5 days in the telencephalon in comparison with the spinal cord. This delay between determination and differentiation appears to be intrinsic to telencephalic oligodendrocytes, as it was not shortened by diffusible or cell-cell contact factors present in the spinal cord.


2005 ◽  
Vol 283 (2) ◽  
pp. 357-372 ◽  
Author(s):  
I. Washington Smoak ◽  
N.A. Byrd ◽  
R. Abu-Issa ◽  
M.M. Goddeeris ◽  
R. Anderson ◽  
...  

2021 ◽  
Author(s):  
Cayla E Jewett ◽  
Bailey L McCurdy ◽  
Eileen T O'Toole ◽  
Katherine S Given ◽  
Carrie H Lin ◽  
...  

Primary cilia are signaling organelles essential for development and homeostasis. Loss of primary cilia is lethal, and decreased or defective cilia cause multisystemic conditions called ciliopathies. Down syndrome shares clinical overlap with ciliopathies. We previously showed that trisomy 21 diminishes primary cilia formation and function due to elevated Pericentrin, a centrosome protein encoded on chromosome 21. Pericentrin is mislocalized, creating aggregates that disrupt pericentrosomal trafficking and microtubule organization. Here, we examine the cilia-related molecules and pathways disrupted in trisomy 21 and their in vivo phenotypic relevance. Utilizing ciliogenesis time course experiments, we reveal how Pericentrin, microtubule networks, and components of ciliary vesicles are reorganized for ciliogenesis in euploid cells. Early in ciliogenesis, chromosome 21 polyploidy results in elevated Pericentrin and microtubule networks away from the centrosome that ensnare MyosinVA and EHD1, blocking mother centriole uncapping that is essential for ciliogenesis. Ciliated trisomy 21 cells have persistent trafficking defects that reduce transition zone protein localization, which is critical for Sonic hedgehog signaling. Sonic hedgehog signaling is decreased and anticorrelates with Pericentrin levels in trisomy 21 primary mouse embryonic fibroblasts. Finally, we observe decreased ciliation in vivo. A mouse model of Down syndrome with elevated Pericentrin has fewer primary cilia in cerebellar granule neuron progenitors and thinner external granular layers. Our work reveals that elevated Pericentrin in trisomy 21 disrupts multiple early steps of ciliogenesis and creates persistent trafficking defects in ciliated cells. This pericentrosomal crowding results in signaling defects consistent with the neurological deficits found in individuals with Down syndrome.


2003 ◽  
Vol 229 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Brent J. Tierney ◽  
Trang Ho ◽  
Mark V. Reedy ◽  
Philip R. Brauer

1992 ◽  
Vol 117 (2) ◽  
pp. 369-382 ◽  
Author(s):  
HJ Hathaway ◽  
BD Shur

Mesenchymal cell migration and neurite outgrowth are mediated in part by binding of cell surface beta 1,4-galactosyltransferase (GalTase) to N-linked oligosaccharides within the E8 domain of laminin. In this study, we determined whether cell surface GalTase functions during neural crest cell migration and neural development in vivo using antibodies raised against affinity-purified chicken serum GalTase. The antibodies specifically recognized two embryonic proteins of 77 and 67 kD, both of which express GalTase activity. The antibodies also immunoprecipitated and inhibited chick embryo GalTase activity, and inhibited neural crest cell migration on laminin matrices in vitro. Anti-GalTase antibodies were microinjected into the head mesenchyme of stage 7-9 chick embryos or cranial to Henson's node of stage 6 embryos. Anti-avian GalTase IgG decreased cranial neural crest cell migration on the injected side but did not cross the embryonic midline and did not affect neural crest cell migration on the uninjected side. Anti-avian GalTase Fab crossed the embryonic midline and perturbed cranial neural crest cell migration throughout the head. Neural fold elevation and neural tube closure were also disrupted by Fab fragments. Cell surface GalTase was localized to migrating neural crest cells and to the basal surfaces of neural epithelia by indirect immunofluorescence, whereas GalTase was undetectable on neural crest cells prior to migration. These results suggest that, during early embryogenesis, cell surface GalTase participates during neural crest cell migration, perhaps by interacting with laminin, a major component of the basal lamina. Cell surface GalTase also appears to play a role in neural tube formation, possibly by mediating neural epithelial adhesion to the underlying basal lamina.


Sign in / Sign up

Export Citation Format

Share Document