scholarly journals The Ubiquitin Proteasome System Acutely Regulates Presynaptic Protein Turnover and Synaptic Efficacy

2003 ◽  
Vol 13 (11) ◽  
pp. 899-910 ◽  
Author(s):  
Sean D Speese ◽  
Nick Trotta ◽  
Chris K Rodesch ◽  
Bharathi Aravamudan ◽  
Kendal Broadie
2006 ◽  
Vol 291 (1) ◽  
pp. H1-H19 ◽  
Author(s):  
Saul R. Powell

The ubiquitin-proteasome system (UPS) is the major nonlysosomal pathway for intracellular protein degradation, generally requiring a covalent linkage of one or more chains of polyubiquitins to the protein intended for degradation. It has become clear that the UPS plays major roles in regulating many cellular processes, including the cell cycle, immune responses, apoptosis, cell signaling, and protein turnover under normal and pathological conditions, as well as in protein quality control by removal of damaged, oxidized, and/or misfolded proteins. This review will present an overview of the structure, biochemistry, and physiology of the UPS with emphasis on its role in the heart, if known. In addition, evidence will be presented supporting the role of certain muscle-specific ubiquitin protein ligases, key regulatory components of the UPS, in regulation of sarcomere protein turnover and cardiomyocyte size and how this might play a role in induction of the hypertrophic phenotype. Moreover, this review will present the evidence suggesting that proteasomal dysfunction may play a role in cardiac pathologies such as myocardial ischemia, congestive heart failure, and myofilament-related and idiopathic-dilated cardiomyopathies, as well as cardiomyocyte loss in the aging heart. Finally, certain pitfalls of proteasome studies will be described with the intent of providing investigators with enough information to avoid these problems. This review should provide current investigators in the field with an up-to-date analysis of the literature and at the same time provide an impetus for new investigators to enter this important and rapidly changing area of research.


2012 ◽  
Vol 18 (6) ◽  
pp. 589-601 ◽  
Author(s):  
Hemi Dimant ◽  
Darius Ebrahimi-Fakhari ◽  
Pamela J. McLean

Parkinson disease, a progressive neurodegenerative disorder, is caused by the pathological accumulation of proteins, including the ubiquitous presynaptic protein α-synuclein. Alterations in the metabolism of α-synuclein have clearly been linked to neurodegeneration, and early steps in the pathological sequence of this protein include the formation of oligomers, fibrils, and small aggregates. Targeting these early steps of oligomerization is one of the main therapeutic approaches in the quest to develop disease-modifying agents. Molecular chaperones, molecules that can mediate the proper folding and refolding of client proteins, are vital to cell function and survival and thus have been explored as potential therapeutic agents. Important to Parkinson disease, chaperones are capable of preventing α-synuclein misfolding, oligomerization, and aggregate formation as shown in vitro and in Parkinson disease animal models. Furthermore, chaperones and associated co-chaperones are closely linked to pathways of protein degradation, like the ubiquitin-proteasome system and autophagy, and are thus able to remove irreversibly misfolded proteins. In this review, we summarize the role of molecular chaperones in Parkinson disease models and discuss the importance of preserving protein homeostasis to prevent neurodegeneration. We also review the growing number of exciting studies that have targeted molecular chaperone function as a novel therapeutic approach.


2005 ◽  
Vol 41 ◽  
pp. 173-186 ◽  
Author(s):  
Didier Attaix ◽  
Sophie Ventadour ◽  
Audrey Codran ◽  
Daniel Béchet ◽  
Daniel Taillandier ◽  
...  

The ubiquitin–proteasome system (UPS) is believed to degrade the major contractile skeletal muscle proteins and plays a major role in muscle wasting. Different and multiple events in the ubiquitination, deubiquitination and proteolytic machineries are responsible for the activation of the system and subsequent muscle wasting. However, other proteolytic enzymes act upstream (possibly m-calpain, cathepsin L, and/or caspase 3) and downstream (tripeptidyl-peptidase II and aminopeptidases) of the UPS, for the complete breakdown of the myofibrillar proteins into free amino acids. Recent studies have identified a few critical proteins that seem necessary for muscle wasting {i.e. the MAFbx (muscle atrophy F-box protein, also called atrogin-1) and MuRF-1 [muscle-specific RING (really interesting new gene) finger 1] ubiquitin–protein ligases}. The characterization of their signalling pathways is leading to new pharmacological approaches that can be useful to block or partially prevent muscle wasting in human patients.


2005 ◽  
Vol 41 (1) ◽  
pp. 173 ◽  
Author(s):  
Didier Attaix ◽  
Sophie Ventadour ◽  
Audrey Codran ◽  
Daniel Béchet ◽  
Daniel Taillandier ◽  
...  

2020 ◽  
Author(s):  
Jon Uranga ◽  
Lukas Hasecke ◽  
Jonny Proppe ◽  
Jan Fingerhut ◽  
Ricardo A. Mata

The 20S Proteasome is a macromolecule responsible for the chemical step in the ubiquitin-proteasome system of degrading unnecessary and unused proteins of the cell. It plays a central role both in the rapid growth of cancer cells as well as in viral infection cycles. Herein, we present a computational study of the acid-base equilibria in an active site of the human proteasome, an aspect which is often neglected despite the crucial role protons play in the catalysis. As example substrates, we take the inhibition by epoxy and boronic acid containing warheads. We have combined cluster quantum mechanical calculations, replica exchange molecular dynamics and Bayesian optimization of non-bonded potential terms in the inhibitors. In relation to the latter, we propose an easily scalable approach to the reevaluation of non-bonded potentials making use of QM/MM dynamics information. Our results show that coupled acid-base equilibria need to be considered when modeling the inhibition mechanism. The coupling between a neighboring lysine and the reacting threonine is not affected by the presence of the inhibitor.


Sign in / Sign up

Export Citation Format

Share Document