Absolute rate constants for the reaction of the hydrated electron, hydroxyl radical and hydrogen atom with chloroacetones in water

2002 ◽  
Vol 65 (4-5) ◽  
pp. 327-334 ◽  
Author(s):  
Jason A. Williams ◽  
William J. Cooper ◽  
Stephen P. Mezyk ◽  
David M. Bartels
1995 ◽  
Vol 73 (12) ◽  
pp. 2137-2142 ◽  
Author(s):  
A.J. Elliot ◽  
M.P. Chenier ◽  
D.C. Ouellette

In this publication we report: (i) the rate constants for reaction of the hydrated electron with 1-hexyn-3-ol ((8.6 ± 0.3) × 108 dm3 mol−1 s−1 at 18 °C), cinnamonitrile ((2.3 ± 0.2) × 1010 dm3 mol−1 s−1 at 20 °C), and 1,3-diethyl-2-thiourea ((3.5 ± 0.3) × 108 dm3 mol−1 s−1 at 22 °C). For cinnamonitrile and diethylthiourea, the temperature dependence up to 200 °C and 150 °C, respectively, is also reported; (ii) the rate constants for the reaction of the hydroxyl radical with 1-hexyn-3-ol ((5.5 ± 0.5) × 109 dm3 mol−1 s−1 at 20 °C), cinnamonitrile ((9.2 ± 0.3) × 109 dm3 mol−1 s−1 at 21 °C), and diethylthiourea ((8.0 ± 0.8) × 108 dm3 mol−1 s−1 at 22 °C). For cinnamonitrile, the temperature dependence up to 200 °C is also reported; (iii) the rate constant for the hydrogen atom reacting with 1-hexyn-3-ol ((4.3 ± 0.4) × 109 dm3 mol−1 s−1 at 20 °C). Keywords: radiolysis, corrosion inhibitors, rate constants.


1965 ◽  
Vol 61 (0) ◽  
pp. 1417-1424 ◽  
Author(s):  
G. E. Adams ◽  
J. W. Boag ◽  
B. D. Michael

1971 ◽  
Vol 49 (12) ◽  
pp. 2178-2182 ◽  
Author(s):  
J. A. Howard ◽  
S. Korcek

Absolute rate constants for the liquid phase autoxidation of some organic sulfides at 30 °C have been measured. The reactivities of organic sulfides towards t-butylperoxy radicals are equal to or somewhat less than the reactivities of structurally analogous ethers. The α-alkylthiylalkylperoxy radicals appear to be about 3–5 times more reactive in hydrogen atom abstraction than the α-alkoxyalkylperoxy radicals.


1967 ◽  
Vol 45 (8) ◽  
pp. 793-802 ◽  
Author(s):  
J. A. Howard ◽  
K. U. Ingold

Absolute rate constants have been measured for the autoxidation of a large number of hydrocarbons at 30 °C. The chain-propagating and chain-terminating rate constants depend on the structure of the hydrocarbon and also on the structure of the chain-carrying peroxy radical. With certain notable exceptions which are mainly due to steric hindrance, the rate constants for hydrogen-atom abstraction increase in the order primary < secondary < tertiary; and, for compounds losing a secondary hydrogen atom, the rate constants increase in the order unactivated < acyclic activated by a single π-electron system < cyclic activated by a single Π-system < acyclic activated by two π-systems < cyclic activated by two π-systems. The rate constants for chain termination by the self-reaction of two peroxy radicals generally increase in the order tertiary peroxy radicals < acyclic allylic secondary  [Formula: see text] cyclic secondary  [Formula: see text] acyclic benzylic secondary < primary peroxy radicals < hydroperoxy radicals.


2001 ◽  
Vol 105 (38) ◽  
pp. 8681-8690 ◽  
Author(s):  
Igor Štefanić ◽  
Marija Bonifačić ◽  
Klaus-Dieter Asmus ◽  
David A. Armstrong

1978 ◽  
Vol 56 (24) ◽  
pp. 3047-3053 ◽  
Author(s):  
J. H. B. Chenier ◽  
S. B. Tong ◽  
J. A. Howard

Rate constants for abstraction of secondary and tertiary hydrogens from structurally different alkanes by the tert-butylperoxy radical in solution at 30 °C have been determined by competitive experiments in the presence of tert-butyl hydroperoxide. Rate constants fall in the range 1 × 10−4to 9 × 10−4and 1 × 10−3–2 × 10−2 M−1 s−1 for secondary and tertiary aliphatic C—H bonds, respectively. The most reactive secondary hydrogen is, therefore, almost as reactive as the least reactive tertiary hydrogen. Differences in reactivity within a type of aliphatic C—H bond are governed by differences in steric hindrance to attack by the peroxy radical and by relief of steric strain upon removal of the labile hydrogen. Rate constants for reaction of perdeuterated methylcyclohexane and 3-methylpentane are much smaller than the values calculated from the maximum primary kinetic isotope effect for this reaction.


Sign in / Sign up

Export Citation Format

Share Document