Asymptotic behavior of stress intensity factors near an angular point of a crack front

1999 ◽  
Vol 18 (1) ◽  
pp. 135-145 ◽  
Author(s):  
Jean-Baptiste Leblond ◽  
Dominique Leguillon
Author(s):  
D. Rudland ◽  
D.-J. Shim ◽  
A. Csontos

Typical ASME Section XI subcritical cracking analyses assume an idealized flaw shape driven by stress intensity factors developed for semi-elliptical shaped flaws. Recent advanced finite element analyses (AFEA) conducted by both the US NRC and the nuclear industry for long circumferential indications found in the pressurizer nozzle dissimilar metal welds at the Wolf Creek power plant, suggest that the semi-elliptical flaw assumption may be overly conservative in some cases. The AFEA methodology that was developed allowed the progression of a planar flaw subjected to typical SCC-type growth laws by calculating stress intensity factors at every nodal point along the crack front, and incrementally advancing the crack front in a more natural manner. Typically crack growth analyses increment the semi-elliptical flaw by considering only the stress intensity factor at the deepest and surface locations along the crack front, while keeping the flaw shape semi-elliptical. In this paper, a brief background to the AFEA methodology and the analyses conducted in the Wolf Creek effort will be discussed. In addition, the natural behavior of surface cracks under normal operating conditions (plus welding residual stress) will be investigated and compared to the semi-elliptical assumption. Conclusions on the observation of when semi-elliptical flaw assumptions are appropriate will be made. These observations will add insight into the conservatism of using an idealized flaw shape assumption.


2005 ◽  
Vol 127 (3) ◽  
pp. 269-279 ◽  
Author(s):  
X. Qian ◽  
Robert H. Dodds ◽  
Y. S. Choo

This paper describes the mode mixity of stress-intensity factors for surface cracks at weld toes located at the saddle point in circular hollow section X joints. The remote loading applies a uniform tensile stress at the end of the brace along its axis. The three-dimensional finite element models employ mesh tieing between a topologically continuous, global mesh and a separate, local crack-front mesh. Analyses of a simple plate model that approximates key features of toe cracks at the brace-chord intersection verify the negligible effects of the recommended mesh-tieing scheme on stress intensity factors. The linear-elastic analyses compute the mixed-mode stress intensity factors along the crack front using an interaction-integral approach. The mixed-mode stress intensity factors indicate that the crack front experiences predominantly mode I loading, with KIII→0 near the deepest point on the front (ϕ=π∕2). The total crack driving force, described by the J integral, reaches a maximum value at the deepest point of the crack for the crack aspect ratio a∕c=0.25 considered here. The mode-mixity angle, ψ=tan−1(KII∕KI), at ϕ=π∕2 is compared for a range of practical X-joint configurations and crack-depth ratios. The present study demonstrates that the mode-mixity angle ψ increases with increasing brace-to-chord diameter ratio (β) and decreasing chord radius to wall thickness ratio (γ). Values of the nondimensional stress intensity factors (FI=KI∕σ¯brπa and FII=KII∕σ¯brπa), however, show an opposite trend, with higher crack driving forces for small β and large γ ratios. The variations in the brace-to-chord wall thickness ratio (τ) and the crack depth ratio (a∕t0) do not generate significant effects on the mode mixity.


1986 ◽  
Vol 53 (4) ◽  
pp. 774-778 ◽  
Author(s):  
Huajian Gao ◽  
James R. Rice

Recent work (Rice, 1985a) has presented the calculations of the first order variation in an elastic displacement field associated with arbitrary incremental planar advance of the location of the front of a half-plane crack in a loaded elastic full space. That work also indicated the relation of such calculations to a three-dimensional weight function theory for crack analysis and derived an expression for the distribution of the tensile mode stress intensity factor along a slightly curved crack front, to first order accuracy in the deviation of the crack front location from a reference straight line. Here we extend the results on stress intensity factors to the shear modes, solving to similar first order accuracy for the in-plane (Mode 2) and antiplane (Mode 3) shear stress intensity factors along a slightly curved crack front. Implications of results for the configurational stability of a straight crack front are discussed. It is also shown that the concept of line tension, while qualitatively useful in characterizing the crack extension force (energy release rate) distribution exerted on a tough heterogeneity along a fracture path as the crack front begins to curve around it, does not agree with the exact first order effect that is derived here.


2015 ◽  
Vol 665 ◽  
pp. 77-80 ◽  
Author(s):  
Jana Horníková ◽  
Stanislav Žák ◽  
Pavel Šandera

The aim of the contribution is to assess the influence of the microstructure of materials on the effective values of stress intensity factors. In this paper some results of 3D-finite element analyses of a CTS-specimen with a tortuous crack are presented. The specimen is subject to an in-plane shear remote loading (mode II) and tortuous crack flanks simulate rough cracks in polycrystalline materials. Finite element calculation by using the commercially available FE-code ANSYS has been carried out to determine stress/strain distribution in the vicinity of crack front and the local values of stress intensity factors are evaluated along the crack front. The existence of friction forces generated by sliding of crack wake asperities is included into calculations. Respective effective values are determined in dependence of the roughness of crack flanks. Results achieved allows to characterize the influence of microstructure to crack growth.


2020 ◽  
Vol 25 (3) ◽  
pp. 212-218
Author(s):  
S. Kuznetsov ◽  
A. Karakozova

AbstractA relation connecting stress intensity factors (SIF) with displacement intensity factors (DIF) at the crack front is derived by solving a pseudodifferential equation connecting stress and displacement discontinuity fields for a plane crack in an elastic anisotropic medium with arbitrary anisotropy. It is found that at a particular point on the crack front, the vector valued SIF is uniquely determined by the corresponding DIF evaluated at the same point.


2007 ◽  
Vol 567-568 ◽  
pp. 301-304 ◽  
Author(s):  
Emilie Ferrié ◽  
Jean Yves Buffière ◽  
Wolfgang Ludwig ◽  
Anthony Gravouil

In this paper we will present how it is possible to couple a 3D experimental technique with a 3D numerical method in order to calculate the stress intensity factors along the crack front taking into account the real shape of the crack. This approach is used to characterize microstructurally short fatigue cracks that exhibit a rather complicated 3D shape. The values of the stress intensity factors are calculated along the crack front at different stages of crack propagation and it can be seen that the crack shape irregularities introduce rather important fluctuations of the values of KI, KII and KIII along the crack front. The values of KI obtained taking into account the real shape of the crack are significantly different from the ones calculated using an approach based on a shape assumption


Sign in / Sign up

Export Citation Format

Share Document