Cellular Tolerance, Accumulation and Distribution of Cadmium in Leaves of Hyperaccumulator Picris divaricata

Pedosphere ◽  
2012 ◽  
Vol 22 (4) ◽  
pp. 497-507 ◽  
Author(s):  
Peng-Jie HU ◽  
Yuan-Yuan GAN ◽  
Ye-Tao TANG ◽  
Quan-Fang ZHANG ◽  
Dan JIANG ◽  
...  
2001 ◽  
Vol 123 (3) ◽  
pp. 247-255 ◽  
Author(s):  
Donna M. Geddes ◽  
Robert S. Cargill

An in vitro model for neural trauma was characterized and validated. The model is based on a novel device that is capable of applying high strain rate, homogeneous, and equibiaxial deformation to neural cells in culture. The deformation waveform is fully arbitrary and controlled via closed-loop feedback. Intracellular calcium [Ca2+]i alterations were recorded in real time throughout the imposed strain with an epifluorescent microscopy system. Peak change in [Ca2+]i, recovery of [Ca2+]i, and percent responding NG108-15 cells were shown to be dependent on strain rate (1−1 to 10−1) and magnitude (0.1 to 0.3 Green’s Strain). These measures were also shown to depend significantly on the interaction between strain rate and magnitude. This model for neural trauma is a robust system that can be used to investigate the cellular tolerance and response to traumatic brain injury.


Weed Science ◽  
1996 ◽  
Vol 44 (4) ◽  
pp. 797-803 ◽  
Author(s):  
Franck E. Dayan ◽  
Hannah M. Green ◽  
John D. Weete ◽  
H. Gary Hancock

Sulfentrazone was foliar applied at 34 and 56 g ai ha−1alone or in combination with surfactants to soybean cultivars Hutcheson and Centennial and to sicklepod, coffee senna, smallflower morningglory, velvetleaf, and yellow nutsedge. The most sensitive weeds, including coffee senna, smallflower morningglory, and velvetleaf, were severely injured by the lowest rate when sulfentrazone was applied with surfactants. Sulfentrazone provided the highest control of yellow nutsedge with X-77. Soybeans were not severely injured by sulfentrazone applied alone, but 55% foliar injury occurred when the herbicide was applied with X-77. However, the seedlings were not killed. Sicklepod was the most tolerant of the weeds tested. In the absence of surfactants, the order of radiolabeled sulfentrazone absorption by the foliage was Centennial (5.8%) = Hutcheson (8.5%) = coffee senna (10.4%) < yellow nutsedge (17.0%) < velvetleaf (22.3%) = smallflower morningglory (24%). Sicklepod leaves did not retain droplets containing sulfentrazone when no surfactant was used. Species with the highest foliar absorption also showed the greatest phytotoxic response to the herbicide. Addition of surfactants to the spray mixture enhanced the foliar absorption and overall phytotoxicity of sulfentrazone in the weeds. An inverse relationship was detected between the foliar absorption of sulfentrazone without surfactants and the amount of cuticular wax present on the leaves. No such correlation was observed when surfactants were used. Thus, surfactants overcame the barrier to absorption imposed by the cuticular wax and, under these conditions, selectivity apparently became dependent upon species-specific cellular tolerance to sulfentrazone.


1968 ◽  
Vol 127 (4) ◽  
pp. 757-766 ◽  
Author(s):  
Martin S. Hirsch ◽  
Frederick A. Murphy ◽  
Martin D. Hicklin

Antithymocyte serum, when administered neonatally to mice, delayed the maturation of the lymphoid system, permitting development of cellular tolerance to LCM virus at an older age than is ordinarily possible. Humoral antibody formation was not prevented and the animals exhibited the paradox of high titers of both circulating virus and antibody. This, in turn, was followed by a chronic immunopathologic glomerulonephritis in most animals. Some animals developed wasting disease between 1 and 2 months of age, characterized by reticular cell hyperplasia and widespread infiltration into tissues and organs.


2017 ◽  
Vol 24 (9) ◽  
pp. T47-T64 ◽  
Author(s):  
Angela Ogden ◽  
Padmashree C G Rida ◽  
Ritu Aneja

The multifaceted involvement of centrosome amplification (CA) in tumorigenesis is coming into focus following years of meticulous experimentation, which have elucidated the powerful abilities of CA to promote cellular invasion, disrupt stem cell division, drive chromosomal instability (CIN) and perturb tissue architecture, activities that can accelerate tumor progression. Integration of the extantin vitro,in vivoand clinical data suggests that in some tissues CA may be a tumor-initiating event, in others a consequential ‘hit’ in multistep tumorigenesis, and in some others, non-tumorigenic. However,in vivodata are limited and primarily focus on PLK4 (which has CA-independent mechanisms by which it promotes aggressive cellular phenotypes).In vitrobreast cancer models suggest that CA can promote tumorigenesis in breast cancer cells in the setting of p53 loss or mutation, which can both trigger CA and promote cellular tolerance to its tendency to slow proliferation and induce aneuploidy. It is thus our perspective that CA is likely an early hit in multistep breast tumorigenesis that may sometimes be lost to preserve aggressive karyotypes acquired through centrosome clustering-mediated CIN, both numerical and structural. We also envision that the robust link between p53 and CA may underlie, to a considerable degree, racial health disparity in breast cancer outcomes. This question is clinically significant because, if it is true, then analysis of centrosomal profiles and administration of centrosome declustering drugs could prove highly efficacious in risk stratifying breast cancers and treating African American (AA) women with breast cancer.


1993 ◽  
Vol 292 (2) ◽  
pp. 609-615 ◽  
Author(s):  
M Wan ◽  
P E Hunziker ◽  
J H R Kägi

The effects of increasing concentrations of Zn(II) and Cd(II) on the expression of the four isometallothioneins (isoMTs), namely MT-1a, MT-2a, MT-2d and MT-2e, in rabbit kidney cells (RK-13) and the development of cellular tolerance to these metal ions were studied. The results showed that, whereas in parental cells MT concentration was low and composed nearly exclusively of MT-2a and MT-1a, all four isoMTs increased massively in abundance when the cells were exposed to toxic concentrations of Zn(II) or Cd(II), the relative increase being largest in the two minor isoforms MT-2d and MT-2e. While the response of the four isoMTs to the challenge by Zn(II) or Cd(II) was qualitatively comparable, there were differences in sensitivity and delay time, Cd(II) being the more efficient inducer and much faster in eliciting the onset of isoMT synthesis. An even larger production of isoMTs resulted when RK-13 cells were cultured in the presence of a series of metal concentrations yielding sub-lines of increased metal tolerance. In this instance too, there were marked differences in the response to Cd(II) and Zn(II). Thus, in cells of sub-lines selected for tolerance to moderate concentrations of Cd(II) the kinetic analysis of isoMT accretion gave indications of a saturable induction process while no such evidence was forthcoming for Zn(II). In sub-line cells selected for tolerance to the highest concentrations of Cd(II) or Zn(II) isoMT formation was increased by another order of magnitude, reaching for some isoforms a 100- to 1000-fold augmentation over the amounts measured in cells of the unexposed parental cells. A potentiation of this magnitude goes beyond the range of ordinary regulation of gene expression. It is to be viewed instead as an enlargement of the capacity of isoMT synthesis acquired by a variety of mechanisms in the surviving cells.


2006 ◽  
Vol 66 (2) ◽  
pp. 748-754 ◽  
Author(s):  
Xiaohua Wu ◽  
Katsuya Takenaka ◽  
Eiichiro Sonoda ◽  
Helfrid Hochegger ◽  
Shosuke Kawanishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document