Postemergence Activity of Sulfentrazone: Effects of Surfactants and Leaf Surfaces

Weed Science ◽  
1996 ◽  
Vol 44 (4) ◽  
pp. 797-803 ◽  
Author(s):  
Franck E. Dayan ◽  
Hannah M. Green ◽  
John D. Weete ◽  
H. Gary Hancock

Sulfentrazone was foliar applied at 34 and 56 g ai ha−1alone or in combination with surfactants to soybean cultivars Hutcheson and Centennial and to sicklepod, coffee senna, smallflower morningglory, velvetleaf, and yellow nutsedge. The most sensitive weeds, including coffee senna, smallflower morningglory, and velvetleaf, were severely injured by the lowest rate when sulfentrazone was applied with surfactants. Sulfentrazone provided the highest control of yellow nutsedge with X-77. Soybeans were not severely injured by sulfentrazone applied alone, but 55% foliar injury occurred when the herbicide was applied with X-77. However, the seedlings were not killed. Sicklepod was the most tolerant of the weeds tested. In the absence of surfactants, the order of radiolabeled sulfentrazone absorption by the foliage was Centennial (5.8%) = Hutcheson (8.5%) = coffee senna (10.4%) < yellow nutsedge (17.0%) < velvetleaf (22.3%) = smallflower morningglory (24%). Sicklepod leaves did not retain droplets containing sulfentrazone when no surfactant was used. Species with the highest foliar absorption also showed the greatest phytotoxic response to the herbicide. Addition of surfactants to the spray mixture enhanced the foliar absorption and overall phytotoxicity of sulfentrazone in the weeds. An inverse relationship was detected between the foliar absorption of sulfentrazone without surfactants and the amount of cuticular wax present on the leaves. No such correlation was observed when surfactants were used. Thus, surfactants overcame the barrier to absorption imposed by the cuticular wax and, under these conditions, selectivity apparently became dependent upon species-specific cellular tolerance to sulfentrazone.

1971 ◽  
Vol 19 (2) ◽  
pp. 173 ◽  
Author(s):  
SGM Carr ◽  
L Milkovits ◽  
DJ Carr

The eucalypt leaf contains a store of untapped information of potentially great value taxonomic and evututionary studies. Tie cuticie of certain eucalypts is shown to possess a complex and species-specific ornamentation so distinctive that its features can be regarded as diagnostic. The term "phytoglyph" is coined for the constellation of microanatomical features of the surfaces of leaves, including the microanatomy of the cuticle. Phytoglyphic analysis relates to the combination of three methods, light microscopy of stained cuticles, scanning electron microscopy of leaf surfaces, and light microscopy of thin sections of the cuticular and associated structures. Its use is illustrated by the dissection of the "form species" E. dichromophloia into a number of separate and recognizable entities, some of which were previously accorded the status of species. The plant geographical and other implications of this dissection are dealt with. In particular, E. dichromophloia F. Muell. is to be regarded as a species of very restricted distribution. The microanatomical characters of the cuticle are closely controlled products of the epidermal layers. The fact that specimens which (on other grounds) can be grouped together as a species have identical cuticular microanatomy suggests that the phytoglyph is genetically strongly determined and does not consist of inadvertent, trivial surface features with a high degree of plasticity. This in turn raises the problem of the development of the cuticular microanatomy which cannot be explained on current views of the formation of the cuticle by passive diffusion of precursor substances through the epidermal walls, followed by a hardening process.


2019 ◽  
Author(s):  
Chao Cheng ◽  
Shutong Hu ◽  
Yun Han ◽  
Di Xia ◽  
Bang-Lian Huang ◽  
...  

Abstract Using RACE PCR, full length WRI1-like gene was amplified from yellow nutsedge. Conserved domain and phylogenetic analyses suggested it as WRI3/4-like gene. Tissue-specific expression data showed the highest expression in leaves, followed by roots while the lowest expression was detected in tuber. Transgenic Arabidopsis plants expressing nutsedge WRI3/4-like gene showed significantly improved tolerance to both PEG-simulated drought stress and real dehydration, compared with the wild type (WT). Under normal growth conditions, the expressions of key fatty acid biosynthesis genes was not significantly different between WT and transgenic lines, while the expressions of genes involved in cuticular wax biosynthesis was significantly higher in transgenic lines compared with the WT. The PEG-simulated drought stress did not induce any significant change in the expression of fatty acid and wax biosynthesis genes in WT plants, while the expression of fatty acid and wax biosynthesis genes was significantly increased in transgenic lines compared with WT as well as unstressed transgenic control. The expression of TAG1, the gene involved in triacylglycerol (TAG) accumulation, was significantly lower in the transgenic lines than that in the WT in normal growth conditions. Drought stress slightly decreased the expression of TAG1 in the WT, but significantly lowered it in transgenic lines compared with its unstressed transgenic control and WT. Consistent with gene expression data, the cuticular wax content in Arabidopsis leaves was significantly higher in the transgenic lines than in the WT, while the oil content was not significantly different. Our results indicated that WRI3/4-like gene from Cyperus esculentus improves drought tolerance in Arabidopsis probably by promoting cuticular wax biosynthesis and, hence, could be a valuable target for improving drought tolerance in crops through recombinant DNA technology.


2019 ◽  
Author(s):  
Chao Cheng ◽  
Shutong Hu ◽  
Yun Han ◽  
Di Xia ◽  
Bang-Lian Huang ◽  
...  

Abstract In this study we cloned a WRI1-like gene from yellow nutsedge. Conserved domain and phylogenetic analyses indicated it to be a WRI3/4-like gene. Arabidopsis plants transformed with WRI3/4-like gene showed significantly improved tolerance to both PEG-simulated drought stress and real dehydration compared with the wild type. Quantitative RT-PCR indicated that, under unstressed conditions, the expressions of key genes involved in fatty acid biosynthesis was not significantly different between wild type (WT) and transgenic lines, while the expressions of genes involved in cuticular wax biosynthesis was significantly higher in transgenic lines compared with the wild type. The PEG treatment slightly decreased the expression of above mentioned genes in WT plants while it was significantly increased in transgenic lines compared with their respective unstressed control. Without PEG treatment, the expression of TAG1, the gene involved in triacylglycerol (TAG) accumulation, was 10-40% lower in the transgenic lines than that in the wild type. However, after PEG treatment, the expression of TAG1 was slightly decreased in the wild type, while in the transgenic lines its expression was decreased by 20-70% compared with unstressed transgenic lines and was highly significantly lower than that in the wild type. The cuticular wax content in Arabidopsis leaves was significantly higher in the transgenic lines than that in the wild type, while the oil content was not significantly different.


Weed Science ◽  
1972 ◽  
Vol 20 (1) ◽  
pp. 71-74 ◽  
Author(s):  
P. E. Keeley ◽  
C. H. Carter ◽  
J. H. Miller

The following herbicides were evaluated for relative phytotoxicity to cotton(Gossypium hirsutumL. ‘Acala SJ-1′), purple nutsedge(Cyperus rotundusL.), and yellow nutsedge(Cyperus esculentusL.) under greenhouse conditions: 2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide (alachlor); 2-chloro-2′,6′-diethyl-N-(butoxymethyl)acetanilide (CP-53619); 2-(3,4-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione (VCS-438); 4-chloro-5-(dimethylamino)-2-α,α,α-trifluoro-m-tolyl)-3(2H)-pyridazinone (San-6706); 2-(α naphthoxy)-N,N-diethyl-propionamide (R-7465); andS-isopropyl 5-ethyl-2-methyl-piperidine-1-carbiothioate (R-12001). Herbicides were incorporated 6.35 cm deep, at rates of 1.12, 2.24, and 4.48 kg/ha, into a fine sandy loam prior to planting. All treatments except the low rate of alachlor and VCS-438 controlled yellow nutsedge for 8 weeks. R-7465 and R-12001 at 1.12 kg/ha and San-6706 at 2.24 kg/ha controlled purple nutsedge for 8 weeks. Alachlor and CP-53619 were somewhat less effective against purple nutsedge than yellow nutsedge, but their intermediate rates suppressed purple nutsedge for 4 weeks. Even the high rate of VCS-438 was ineffective against purple nutsedge. Cotton, in terms of fresh shoot weight, exhibited considerable tolerance to 1.12 and 2.24 kg/ha of VCS-438 and CP-53619 and 1.12 kg/ha of R-7465. Applications of 2.24 kg/ha of CP-53619 and 1.12 kg/ha of R-7465, however, suppressed the development of lateral roots of cotton. Other rates of these herbicides and all rates of alachlor, R-12001, and San-6706 moderately to severely injured cotton in most of the experiments.


1976 ◽  
Vol 3 (6) ◽  
pp. 833 ◽  
Author(s):  
DR Leece

Differential foliar absorption of chemicals by peach, apple and orange was related to cuticle thickness, weight, surface wax and embedded wax content and to surface wax wettability, ultrastructure and composition. Surface wax concentration, especially on abaxial leaf surfaces, correlated well with resistance to foliar absorption. The abaxial surface wax on peach leaves was built up in layers around and over the guard cells (which are preferred paths of spray entry into leaves) whereas apple and orange guard cells were relatively wax-free. Peach surface waxes were more difficult to wet than orange waxes and, although more polar than orange waxes, may be more resistant to water penetration as they were rich in hydrocarbons and triterpenoids. Enhancement of foliar absorption may require improved partitioning of sprays through the surface waxes or the bypassing of the waxes via stomatal penetration.


1994 ◽  
Vol 21 (1) ◽  
pp. 65-68 ◽  
Author(s):  
W. Carroll Johnson ◽  
Benjamin G. Mullinix

Abstract Field studies in 1991 and 1992 at Tifton and Attapulgus, GA evaluated the weed control efficacy and crop safety of F6285 on peanut. Treated peanut were stunted by F6285 and had chlorotic leaflet margins. The degree and persistence of injury varied according to rate of F6285. The lowest rate of F6285 (0.14 kg ai ha-1) produced the aforementioned symptoms early in the season, but peanut recovered by late season with no yield effects (P≤0.05). F6285 at 0.28 and 0.42 kg ha-1 severely injured peanut and reduced yields. Preemergence and vegetative emergence applications of F6285 were equally injurious. F6285 effectively controlled yellow nutsedge at rates as low as 0.14 kg ha-1, but sicklepod was not controlled at rates up to 0.42 kg ha-1. F6285 controlled yellow nutsedge more effectively that standard treatments of metolachlor or imazethapyr, but crop injury from F6285 was greater (P≤0.05) than from other herbicides.


HortScience ◽  
2006 ◽  
Vol 41 (2) ◽  
pp. 346-351 ◽  
Author(s):  
Anton Baudoin ◽  
Sarah Finger McDonald ◽  
Tony K. Wolf

Phytotoxicity of horticultural oil, applied shortly before antifungal sulfur, was evaluated for 23 grape cultivars. Oil application significantly reduced accumulation of soluble solids in berries of 9 of 23 cultivars, but there was no relationship with visible foliar injury. Treatment of leaves of Vitis labrusca `Catawba' with 1.5% JMS Stylet-Oil reduced leaf net photosynthesis (Pn) by 50% to 60% and of Vitis vinifera `Chardonnay' by 20% to 30% 1 day after application. Pn was reduced only when the lower (abaxial) leaf surface was treated; treatment of only the adaxial leaf surface had little effect. The Pn depression in `Catawba' persisted 3 to 4 weeks, whereas reductions in `Chardonnay' persisted less than 2 weeks. The Pn-depressing effect of oil was not significantly ameliorated by real or simulated rainfall, and washing the lower leaf surfaces with water and detergent also had only limited effect. There was no significant difference in Pn depression from oil applications made in the middle of the day (stomata open) compared to application in the evening (stomata closed), or from oil applied at higher versus lower application pressure. The greater sensitivity of `Catawba' than `Chardonnay' to Pn depression by oil may be related to the amount of oil retained by the leaves; the pubescent lower leaf surfaces of `Catawba' retained more than twice as much spray emulsion as did the more glabrous leaves of `Chardonnay'. Visible injury was mild in both cultivars, with small water-soaked lesions developing more commonly on `Chardonnay' than on `Catawba' leaves. Spray oil retention data for additional cultivars suggested that differences in retention can explain a portion of the differences in horticultural oil phytotoxicity.


1978 ◽  
Vol 5 (6) ◽  
pp. 749 ◽  
Author(s):  
DR Leece

Surface wax concentration, distribution, ultrastructure and wettability, as affected by developmental temperature, physiological age and seasonal changes, were studied on leaves of Prunus domestica. Surface waxes covered both leaf surfaces in an amorphous sheet, which extended over the guard cells on the abaxial surface. This sheet may have been thin or discontinuous above adaxial anticlinal walls. A secondary structure of wax ridges was superimposed on the amorphous sheet. Neither surface was readily wetted by water or by solutions of standard organic surfactants. The critical abaxial surface tension was estimated as 22-25 mNm-1 by Zisman plot, confirming that close-packed, oriented, methyl groups are exposed at the wax surface. Surface wax concentration was inversely proportional to temperature during leaf development. At any time, surface waxes differed little among leaves of different physiological ages, but wax concentration increased during the season on leaves of similar physiological age reaching a maximum on the abaxial surface in mid-summer and thereafter remaining constant. Results are discussed in terms of polar pathways through the cuticle, stomatal penetration and spray application strategies.


Weed Science ◽  
1975 ◽  
Vol 23 (6) ◽  
pp. 516-521 ◽  
Author(s):  
R. M. Hayes ◽  
L. M. Wax

Studies of the differential responses of soybean [Glycine max(L.) Merr.] cultivars to bentazon [3-isopropyl-1H-2,1,3,-benzothiadiazin-(4)3H-one 2,2-dioxide] revealed slightly greater translocation and about a twofold greater foliar absorption in the sensitive cultivar ‘PI 229.342 (Nookishirohana),’ than in the tolerant cultivar, ‘Clark 63.’ Clark 63 metabolized bentazon faster than did PI 229.342. Bentazon was metabolized to unidentified polar metabolites I and II in Clark 63, and only to metabolite II in PI 229.342. The differential absorption and metabolism resulted in a tenfold greater concentration of bentazon in the treated leaflet of PI 229.342 than in that of Clark 63 at 8 days after foliar treatment. Leaflets contained similar amounts of14C in petiole uptake studies, but no bentazon was detected in Clark 63 leaflets 24 hr after pulse treatment, whereas about 20% of the methanol-extractable14C from PI 229.342 leaflets cochromatographed with bentazon. Metabolite I was labile to selected enzymes withβ-glycosidic activity, whereas metabolite II was unaffected. Bentazon concentrations of 30 to 50 μM inhibited O2evolution about 50% in isolated chloroplasts from the two cultivars. Differential bentazon metabolism appears to be the main cause of the differential responses of these soybean cultivars to bentazon.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chao Cheng ◽  
Shutong Hu ◽  
Yun Han ◽  
Di Xia ◽  
Bang-Lian Huang ◽  
...  

Abstract Background Cuticular wax plays important role in protecting plants from drought stress. In Arabidopsis WRI4 improves drought tolerance by regulating the biosynthesis of fatty acids and cuticular wax. Cyperus esculentus (yellow nutsedge) is a tough weed found in tropical and temperate zones as well as in cooler regions. In the current study, we report the molecular cloning of a WRI4-like gene from Cyperus esculentus and its functional characterization in Arabidopsis. Results Using RACE PCR, full-length WRI-like gene was amplified from yellow nutsedge. Phylogenetic analyses and amino acid comparison suggested it to be a WRI4-like gene. According to the tissue-specific expression data, the highest expression of WRI4-like gene was found in leaves, followed by roots and tuber. Transgenic Arabidopsis plants expressing nutsedge WRI4-like gene manifested improved drought stress tolerance. Transgenic lines showed significantly reduced stomatal conductance, transpiration rate, chlorophyll leaching, water loss and improved water use efficiency (WUE). In the absence of drought stress, expression of key genes for fatty acid biosynthesis was not significantly different between transgenic lines and WT while that of cuticular wax biosynthesis genes was significantly higher in transgenic lines than WT. The PEG-simulated drought stress significantly increased expression of key genes for fatty acid as well as wax biosynthesis in transgenic Arabidopsis lines but not in WT plants. Consistent with the gene expression data, cuticular wax load and deposition was significantly higher in stem and leaves of transgenic lines compared with WT under control as well as drought stress conditions. Conclusions WRI4-like gene from Cyperus esculentus improves drought tolerance in Arabidopsis probably by promoting cuticular wax biosynthesis and deposition. This in turn lowers chlorophyll leaching, stomatal conductance, transpiration rate, water loss and improves water use efficiency under drought stress conditions. Therefore, CeWRI4-like gene could be a good candidate for improving drought tolerance in crops.


Sign in / Sign up

Export Citation Format

Share Document