cellular phenotypes
Recently Published Documents


TOTAL DOCUMENTS

524
(FIVE YEARS 246)

H-INDEX

45
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Anna S. Nam ◽  
Neville Dusaj ◽  
Franco Izzo ◽  
Rekha Murali ◽  
Robert M. Myers ◽  
...  

Somatic mutations in cancer genes have been ubiquitously detected in clonal expansions across healthy human tissue, including in clonal hematopoiesis. However, mutated and wildtype cells are morphologically and phenotypically similar, limiting the ability to link genotypes with cellular phenotypes. To overcome this limitation, we leveraged multi-modality single-cell sequencing, capturing the mutation with transcriptomes and methylomes in stem and progenitors from individuals with DNMT3A R882 mutated clonal hematopoiesis. DNMT3A mutations resulted in myeloid over lymphoid bias, and in expansion of immature myeloid progenitors primed toward megakaryocytic-erythroid fate. We observed dysregulated expression of lineage and leukemia stem cell markers. DNMT3A R882 led to preferential hypomethylation of polycomb repressive complex 2 targets and a specific sequence motif. Notably, the hypomethylation motif is enriched in binding motifs of key hematopoietic transcription factors, serving as a potential mechanistic link between DNMT3A R882 mutations and aberrant transcriptional phenotypes. Thus, single-cell multi-omics pave the road to defining the downstream consequences of mutations that drive human clonal mosaicism.


Author(s):  
Mathew J. Baldwin ◽  
Jolet Y. Mimpen ◽  
Adam P. Cribbs ◽  
Edward Stace ◽  
Martin Philpott ◽  
...  

Biomaterial augmentation of surgically repaired rotator cuff tendon tears aims to improve the high failure rates (∼40%) of traditional repairs. Biomaterials that can alter cellular phenotypes through the provision of microscale topographical cues are now under development. We aimed to systematically evaluate the effect of topographic architecture on the cellular phenotype of fibroblasts from healthy and diseased tendons. Electrospun polydioxanone scaffolds with fiber diameters ranging from 300 to 4000 nm, in either a highly aligned or random configuration, were produced. Healthy tendon fibroblasts cultured for 7 days on scaffolds with highly aligned fibers demonstrated a distinctive elongated morphology, whilst those cultured on randomly configured fibers demonstrated a flattened and spread morphology. The effect of scaffold micro-architecture on the transcriptome of both healthy and diseased tendon fibroblasts was assessed with bulk RNA-seq. Both healthy (n = 3) and diseased tendon cells (n = 3) demonstrated a similar transcriptional response to architectural variants. Gene set enrichment analysis revealed that large diameter (≥2000 nm) aligned scaffolds induced an upregulation of genes involved in cellular replication and a downregulation of genes defining inflammatory responses and cell adhesion. Similarly, PDPN and CD248, markers of inflammatory or “activated” fibroblasts, were downregulated during culture of both healthy and diseased fibroblasts on aligned scaffolds with large (≥2000 nm) fiber diameters. In conclusion scaffold architectures resembling that of disordered type III collagen, typically present during the earlier phases of wound healing, resulted in tendon fibroblast activation. Conversely, scaffolds mimicking aligned diameter collagen I fibrils, present during tissue remodelling, did not activate tendon derived fibroblasts. This has implications for the design of scaffolds used during rotator cuff repair augmentation.


2022 ◽  
Author(s):  
Michael G. Wuo ◽  
Charles L Dulberger ◽  
Robert A. Brown ◽  
Alexander Sturm ◽  
Eveline Ultee ◽  
...  

The current understanding of mycobacterial cell envelope remodeling in response to antibiotics is limited. Chemical tools that report on phenotypic changes with minimal cell wall perturbation are critical to gaining insight into this time-dependent phenomenon. Herein we describe a fluorogenic chemical probe that reports on mycobacterial cell envelope assembly in real time. We used time-lapse microscopy to reveal distinct spatial and temporal changes in the mycobacterial membrane upon treatment with frontline antibiotics. Differential antibiotic treatment elicited unique cellular phenotypes, providing a platform for monitoring cell envelope construction and remodeling responses simultaneously. Analysis of the imaging data indicates a role for antibiotic-derived outer membrane vesicles in immune modulation.


Author(s):  
Kathleen Boyne ◽  
Deborah A. Corey ◽  
Pan Zhao ◽  
Binyu Lu ◽  
Walter F Boron ◽  
...  

Several aspects of the cell biology of cystic fibrosis (CF) epithelial cells are altered including impaired lipid regulation, disrupted intracellular transport, and impaired microtubule regulation. It is unclear how the loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to these differences. It is hypothesized that the loss of CFTR function leads to altered regulation of carbonic anhydrase (CA) activity resulting in cellular phenotypic changes. In this study, it is demonstrated that CA2 protein expression is reduced in CF model cells, primary mouse nasal epithelial (MNE) cells, excised MNE tissue, and primary human nasal epithelial cells (p<0.05). This corresponds to a decrease in CA2 RNA expression measured by qPCR as well as an overall reduction in CA activity in primary CF MNEs. The addition of CFTR-inhibitor-172 to WT MNE cells for ≥24 h mimics the significantly lower protein expression of CA2 in CF cells. Treatment of CF cells with L-Phenylalanine (L-Phe), an activator of CA activity, restores endosomal transport through an effect on microtubule regulation in a manner dependent on soluble adenylate cyclase (sAC). This effect can be blocked with the CA2-selective inhibitor dorzolamide. These data suggest the loss of CFTR function leads to the decreased expression of CA2 resulting in the downstream cell signaling alterations observed in CF.


2021 ◽  
Vol 25 (2) ◽  
pp. 92-111
Author(s):  
Jiwon M. Lee ◽  
Yo Han Ahn ◽  
Seon Hee Lim ◽  
Hee Gyung Kang

Purpose: Nephrotic syndrome (NS) is the most common form of glomerulopathy in children. Most pediatric patients respond to glucocorticosteroid treatment (steroid-sensitive NS, SSNS), while approximately 10–15% will remain unresponsive or later become steroid-resistant. There has been a long-standing effort to find biomarkers that may predict steroid responsiveness.Methods: We systematically reviewed current studies which investigated clinically relevant biomarkers for predicting steroid responsiveness in pediatric NS. We performed a PubMed and EMBASE search to identify eligible articles. We collected data on urinary markers, blood/serum markers (including cellular phenotypes and mRNA expression), genotypes and HLA allele frequency.Results: A total of 659 articles were identified following electronic and manual searches. After reviewing the titles, abstracts, and full texts, 72 eligible articles were finally included. Vitamin D-binding protein (VDBP) seemed to be significantly elevated in SRNS than in SSNS, in both serum and urine specimen, although further validation is required.Conclusions: The present paper narratively illustrates current understandings of potential biomarkers that may help predict steroid responsiveness. Further investigation and collaboration involving a larger number of patients are necessary.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 50
Author(s):  
Alice-Anaïs Varlet ◽  
Camille Desgrouas ◽  
Cécile Jebane ◽  
Nathalie Bonello-Palot ◽  
Patrice Bourgeois ◽  
...  

Many proteins are causative for inherited partial lipodystrophies, including lamins, the essential constituents of the nuclear envelope scaffold called the lamina. By performing high throughput sequencing on a panel of genes involved in lipodystrophies, we identified a heterozygous mutation in LMNB2 gene (c.700C > T p.(Arg234Trp)) in a female patient presenting early onset type II diabetes, hypertriglyceridemia, and android fat distribution. This mutation is rare in the general population (frequency 0.013% in GnomAD) and was predicted pathogenic by a set of pathogenicity prediction software. Patient-derived fibroblasts showed nuclear shape abnormalities and premature senescence features, which are two typical cellular phenotypes associated with laminopathies. Moreover, we observed an atypical aggregation of lamin B2 in nucleoplasm, which co-distributes with emerin and lamin A/C, along with an abnormal distribution of lamin A/C at the nuclear envelope. Finally, reducing lamin B2 expression level by siRNA targeted toward LMNB2 transcripts resulted in decreased nuclear anomalies and senescence-associated beta-galactosidase, suggesting a role of the mutated protein in the occurrence of the observed cellular phenotype. Altogether, these results suggest that mutations in lamin B2 could produce premature senescence and partial lipodystrophy features as observed with certain mutants of lamin A/C.


2021 ◽  
Author(s):  
Yoshinori Kohwi ◽  
Mari Grange ◽  
Hunter W Richards ◽  
Ya-Chen Liang ◽  
Cheng-Ming Chuong ◽  
...  

Mammalian genomes are organized by multi-layered chromatin folding. Whether and how three-dimensional genome organization contributes to cell-type specific transcription remains unclear. Here we uncover genome architecture formed by specialized sequences, base-unpairing regions (BURs), bound to a nuclear architectural protein, SATB1. SATB1 regulates cell-type specific transcription that underlies changes in cellular phenotypes. We developed a modified ChIP-seq protocol that stringently purifies genomic DNA only with its directly-associated proteins and unmasked previously-hidden BURs as direct SATB1 targets genome-wide. These SATB1-bound BURs are mutually exclusive from CTCF binding sites, and SATB1 is dispensable for CTCF/cohesion-mediated topologically associated domains (TADs). Instead, BURs largely overlap with lamina associated domains (LADs), and the fraction of BURs tethered to the SATB1 protein network in the nuclear interior is cell type-dependent. Our results reveal TAD-independent chromatin folding mediated by BUR sequences, which serve as genome architecture landmarks targeted by SATB1, to regulate cell-type specific gene expression.


2021 ◽  
Vol 22 (24) ◽  
pp. 13211
Author(s):  
Roxana Deleanu ◽  
Laura Cristina Ceafalan ◽  
Anica Dricu

Recent studies have begun to reveal surprising levels of cell diversity in the human brain, both in adults and during development. Distinctive cellular phenotypes point to complex molecular profiles, cellular hierarchies and signaling pathways in neural stem cells, progenitor cells, neuronal and glial cells. Several recent reports have suggested that neural stem and progenitor cell types found in the developing and adult brain share several properties and phenotypes with cells from brain primary tumors, such as gliomas. This transcriptomic crosstalk may help us to better understand the cell hierarchies and signaling pathways in both gliomas and the normal brain, and, by clarifying the phenotypes of cells at the origin of the tumor, to therapeutically address their most relevant signaling pathways.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6100
Author(s):  
Tiziana Servidei ◽  
Donatella Lucchetti ◽  
Pierluigi Navarra ◽  
Alessandro Sgambato ◽  
Riccardo Riccardi ◽  
...  

Intra-tumoral heterogeneity (ITH) is a complex multifaceted phenomenon that posits major challenges for the clinical management of cancer patients. Genetic, epigenetic, and microenvironmental factors are concurrent drivers of diversity among the distinct populations of cancer cells. ITH may also be installed by cancer stem cells (CSCs), that foster unidirectional hierarchy of cellular phenotypes or, alternatively, shift dynamically between distinct cellular states. Ependymoma (EPN), a molecularly heterogeneous group of tumors, shows a specific spatiotemporal distribution that suggests a link between ependymomagenesis and alterations of the biological processes involved in embryonic brain development. In children, EPN most often arises intra-cranially and is associated with an adverse outcome. Emerging evidence shows that EPN displays large intra-patient heterogeneity. In this review, after touching on EPN inter-tumoral heterogeneity, we focus on the sources of ITH in pediatric intra-cranial EPN in the framework of the CSC paradigm. We also examine how single-cell technology has shed new light on the complexity and developmental origins of EPN and the potential impact that this understanding may have on the therapeutic strategies against this deadly pediatric malignancy.


Sign in / Sign up

Export Citation Format

Share Document