scholarly journals Earthworm regulation of nitrogen pools and dynamics and marker genes of nitrogen cycling: A meta-analysis

Pedosphere ◽  
2022 ◽  
Vol 32 (1) ◽  
pp. 131-139
Author(s):  
Rui XUE ◽  
Chong WANG ◽  
Xuelian LIU ◽  
Mengli LIU
2013 ◽  
Vol 95 (2-3) ◽  
pp. 78-88 ◽  
Author(s):  
KAN HE ◽  
ZHEN WANG ◽  
QISHAN WANG ◽  
YUCHUN PAN

SummaryGene expression profiling of peroxisome-proliferator-activated receptor α (PPARα) has been used in several studies, but there were no consistent results on gene expression patterns involved in PPARα activation in genome-wide due to different sample sizes or platforms. Here, we employed two published microarray datasets both PPARα dependent in mouse liver and applied meta-analysis on them to increase the power of the identification of differentially expressed genes and significantly enriched pathways. As a result, we have improved the concordance in identifying many biological mechanisms involved in PPARα activation. We suggest that our analysis not only leads to more identified genes by combining datasets from different resources together, but also provides some novel hepatic tissue-specific marker genes related to PPARα according to our re-analysis.


2016 ◽  
Vol 23 (3) ◽  
pp. 1167-1179 ◽  
Author(s):  
Guiyao Zhou ◽  
Xuhui Zhou ◽  
Yanghui He ◽  
Junjiong Shao ◽  
Zhenhong Hu ◽  
...  

2021 ◽  
Author(s):  
Lorenzo Martini ◽  
Roberta Bardini ◽  
Stefano Di Carlo

The mammalian cortex contains a great variety of neuronal cells. In particular, GABAergic interneurons, which play a major role in neuronal circuit function, exhibit an extraordinary diversity of cell types. In this regard, single-cell RNA-seq analysis is crucial to study cellular heterogeneity. To identify and analyze rare cell types, it is necessary to reliably label cells through known markers. In this way, all the related studies are dependent on the quality of the employed marker genes. Therefore, in this work, we investigate how a set of chosen inhibitory interneurons markers perform. The gene set consists of both immunohistochemistry-derived genes and single-cell RNA-seq taxonomy ones. We employed various human and mouse datasets of the brain cortex, consequently processed with the Monocle3 pipeline. We defined metrics based on the relations between unsupervised cluster results and the marker expression. Specifically, we calculated the specificity, the fraction of cells expressing, and some metrics derived from decision tree analysis like entropy gain and impurity reduction. The results highlighted the strong reliability of some markers but also the low quality of others. More interestingly, though, a correlation emerges between the general performances of the genes set and the experimental quality of the datasets. Therefore, the proposed method allows evaluating the quality of a dataset in relation to its reliability regarding the inhibitory interneurons cellular heterogeneity study.


2018 ◽  
Vol 24 (6) ◽  
pp. 2377-2389 ◽  
Author(s):  
Decai Gao ◽  
Lei Zhang ◽  
Jun Liu ◽  
Bo Peng ◽  
Zhenzhen Fan ◽  
...  

2017 ◽  
Vol 122 (12) ◽  
pp. 3260-3272 ◽  
Author(s):  
Peter M. Homyak ◽  
Steven D. Allison ◽  
Travis E. Huxman ◽  
Michael L. Goulden ◽  
Kathleen K. Treseder

2017 ◽  
Author(s):  
Megan Crow ◽  
Anirban Paul ◽  
Sara Ballouz ◽  
Z. Josh Huang ◽  
Jesse Gillis

AbstractSingle cell RNA-sequencing technology (scRNA-seq) provides a new avenue to discover and characterize cell types, but the experiment-specific technical biases and analytic variability inherent to current pipelines may undermine the replicability of these studies. Meta-analysis of rapidly accumulating data is further hampered by the use of ad hoc naming conventions. Here we demonstrate our replication framework, MetaNeighbor, that allows researchers to quantify the degree to which cell types replicate across datasets, and to rapidly identify clusters with high similarity for further testing. We first measure the replicability of neuronal identity by comparing more than 13 thousand individual scRNA-seq transcriptomes, sampling with high specificity from within the data to define a range of robust practices. We then assess cross-dataset evidence for novel cortical interneuron subtypes identified by scRNA-seq and find that 24/45 cortical interneuron subtypes have evidence of replication in at least one other study. Identifying these putative replicates allows us to re-analyze the data for differential expression and provide lists of robust candidate marker genes. Across tasks we find that large sets of variably expressed genes can identify replicable cell types and subtypes with high accuracy, suggesting a general route forward for large-scale evaluation of scRNA-seq data.


Sign in / Sign up

Export Citation Format

Share Document