Extraction and purification of magnetic nanoparticles from strain of Leptospirillum ferriphilum

2006 ◽  
Vol 16 (6) ◽  
pp. 1417-1420 ◽  
Author(s):  
Jian GAO ◽  
Jian-ping XIE ◽  
Jian-nan DING ◽  
Jian KANG ◽  
Hai-na CHENG ◽  
...  
1970 ◽  
Vol 63 (2) ◽  
pp. 225-241 ◽  
Author(s):  
B. D. Reeves ◽  
M. L. A. de Souza ◽  
I. E. Thompson ◽  
E. Diczfalusy

ABSTRACT An improved method for the assay of plasma progesterone by competitive protein binding is described. The improvement is based upon rigorous control of the variables, the compensation for and standardisation of interfering factors inherent in the method and the use of a human corticosteroid binding globulin, that meets the requirements for sensitivity at levels of 1.0 ng of progesterone and below. The assessment of the reliability of the individual steps in the method as well as that of the complete method is presented. The sensitivity of the method is around 0.2 ng progesterone per ml plasma. Accuracy was measured by adding progesterone in amounts ranging from 0.0 to 1.0 ng to 1.0 ml plasma. There was a linear relationship between the progesterone added and recovered throughout the entire range of values, with a coefficient of correlation (r) of 0.94. Of 52 related steroids tested, none was found which would remain associated with progesterone following extraction and purification and which would also compete with progesterone for binding sites.


PIERS Online ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 231-234 ◽  
Author(s):  
Tsung-Han Tsai ◽  
Long-Sheng Kuo ◽  
Ping-Hei Chen ◽  
Chin-Ting Yang

2017 ◽  
Author(s):  
Bo Tian ◽  
Peter Svedlindh ◽  
Mattias Strömberg ◽  
Erik Wetterskog

In this work, we demonstrate for the first time, a ferromagnetic resonance (FMR) based homogeneous and volumetric biosensor for magnetic label detection. Two different isothermal amplification methods, <i>i.e.</i>, rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) are adopted and combined with a standard electron paramagnetic resonance (EPR) spectrometer for FMR biosensing. For RCA-based FMR biosensor, binding of RCA products of a synthetic Vibrio cholerae target DNA sequence gives rise to the formation of aggregates of magnetic nanoparticles. Immobilization of nanoparticles within the aggregates leads to a decrease of the net anisotropy of the system and a concomitant increase of the resonance field. A limit of detection of 1 pM is obtained with an average coefficient of variation of 0.16%, which is superior to the performance of other reported RCA-based magnetic biosensors. For LAMP-based sensing, a synthetic Zika virus target oligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by their co-precipitation with Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (a by-product of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement, high sensitivity and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate for designing future point-of-care devices.<br>


2020 ◽  
Vol 84 (11) ◽  
pp. 1362-1365
Author(s):  
A. V. Komina ◽  
R. N. Yaroslavtsev ◽  
Y. V. Gerasimova ◽  
S. V. Stolyar ◽  
I. A. Olkhovsky ◽  
...  

2018 ◽  
pp. 17-28
Author(s):  
Hwunjae Lee ◽  
◽  
SangBock Lee ◽  
Geahwan Jin ◽  
Sergey NETESOV ◽  
...  

2018 ◽  
pp. 17-28
Author(s):  
Hwunjae Lee ◽  
◽  
SangBock Lee ◽  
Geahwan Jin ◽  
Sergey NETESOV ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document