Analysis of deformation characteristic in multi-way loading forming process of aluminum alloy cross valve based on finite element model

2014 ◽  
Vol 24 (1) ◽  
pp. 199-207 ◽  
Author(s):  
Da-wei ZHANG ◽  
Sheng-dun ZHAO ◽  
He YANG
2014 ◽  
Vol 663 ◽  
pp. 668-674
Author(s):  
Azman Senin ◽  
Zulkifli Mohd Nopiah ◽  
Muhammad Jamhuri Jamaludin ◽  
Ahmad Zakaria

The Finite-Element Analysis (FEA) is a prediction methodology that facilitates product designers produced the part design with manufacturing focused. With the similar advantages, manufacturing engineers are capable of build the first actual car model from the new production Draw Die. This approach has eliminated the requirement to manufacture the prototype model from soft tool parts and soft tool press die. However, the prediction accuracy of FEA is a major topic of research work in automotive sector's practitioners and academia as current accuracy level is anticipated at 60%. The objective of works is to assess the prediction accuracy on deformation results from mass production stamped parts. The Finite-element model is developed from the CAD data of the production tools. Subsequently, finite-element model for production tools is discretized with shell elements to avoid computation errors in the simulation process. The sheet blank material with 1.5 mm and 2.0 mm thickness is discredited by shell (2D modeling) and solid elements (3D modeling) respectively. The input parameters for the simulation model for both elements are attained from the actual setup at Press Machine and Production Tool. The analysis of deformation and plastic strain are performed for various setup parameters. Finally, the deformation characteristic such as Forming Limit Diagram (FLD) and thinning are compared for all simulated models.


Cast Metals ◽  
1991 ◽  
Vol 4 (2) ◽  
pp. 89-97 ◽  
Author(s):  
M. R. Tadayon ◽  
R. W. Lewis ◽  
D.T. Gethin

2014 ◽  
Vol 621 ◽  
pp. 195-201
Author(s):  
Surangsee Dechjarern ◽  
Maitri Kamonrattanapisut

Sheet metal deep-draw die is primarily constructed with draw bead, which is then modified based on trial and error to obtain a successful forming without splitting. This work aims at a robust design of forming die using numerical analysis and the Taguchi method. A three dimensional elastoplastic finite element model of a sheet metal forming process of SPCEN steel has been successfully developed using the material flow stress obtained from the modified Erichsen cup test. The model was validated with the actual forming experiment and the results agreed well. The influence of draw bead parameters on splitting and thinning distributions were examined using the Taguchi method. Four parameters, namely the friction coefficient, draw bead height, radius and shoulder radius were investigated. The Taguchi main effect analysis and ANOVA results show that the height and shoulder radius of the draw bead are the most important factor influencing the thinning distribution. Applying the Taguchi method and using the minimum thinning percentage as the design criteria, the optimum die design was identified as height, radius, shoulder radius and the friction coefficient of 4, 8, 8 mm and 0.125 respectively. The verified finite element model using the optimum die design was conducted. The predicted Taguchi response was within 5.9% from finite element analysis prediction. The improvement in the reduction of thinning percentage was 22.35%.


2010 ◽  
Vol 154-155 ◽  
pp. 1255-1261
Author(s):  
Hai Yan Li ◽  
Yi Du Zhang ◽  
Hong Wei Zhang

Based on “physical field coupling” finite element method, the generation of residual stress and interactive coupling effect were analyzed during the forming process of aluminum alloy thick-plate. Therefore, comprehensive residual stress generated from rolling, quenching and stretching was obtained. The finite element model was proved effective by comparing the results of simulation and experiment. Results show that percent reduction has significant influence to the distribution and magnitude of rolling stress; There is a coupling effect between rolling stress and quenching stress, which represents a basic state; Furthermore, after stretching the distribution of coupling stress remains, but the value reduces greatly; The residual stress has got the minimum, when stretching is near 3%.


2011 ◽  
Vol 704-705 ◽  
pp. 674-679
Author(s):  
Dan Xia ◽  
Bin Shi Xu ◽  
Yao Hui Lv ◽  
Yi Jiang ◽  
Cun Long Liu

With considering the Marangoni convection in the molten pool on plasma direct metal forming process, a finite element model posed to describe and reflect the flow in the molten pool. Results of temperature distribution modeling prepared by plasma direct metal forming process of metal powders in an Ar environment were numerically obtained and compared with experimental data. Powders of Fe314 and base plates of R235 steel were taken as sample materials. In the experiment a multi-stream nozzle capable of delivering metal powder coaxially with the plasma arc was used. The model revealed that the velosity of the front part of the pool is a little slower than aft part. Marangoni convection reinforced the convection and enhanced the heat transfer. Profile of the model is the same as the experimental data. This allows us to conclude that the model can be applied for preselecting the process parameters. Keywords: plasma, rapid forming, temperature field, Marangoni convection.


2015 ◽  
Vol 775 ◽  
pp. 219-223
Author(s):  
Wan Mian Yang ◽  
Yuan Xin Luo ◽  
Zhi Fang Liu ◽  
Ru Xu Du

Multi-point forming process has been developed to shape the sheet metal with bidirectional curvature. However, the forming force usually climbs too high so that the dimension of the forming machine should be designed to meet it. To solve this problem, the multi-point incremental forming (MPIF) process was proposed in this paper. First, the principle of this new forming process was introduced. Then, the experimental device was designed. Next, the MPIF process was simulated by a finite element model. The forming effects including displacements, thickness, and curvatures were visualized and discussed in detail. It was found that there is no obvious thickness change during the forming process. The advantage of this forming process is that the shape of the sheet metals adaptable and controllable with small forming force.


Sign in / Sign up

Export Citation Format

Share Document