Effect of Marangoni Convection on Welding Pool of Plasma Direct Metal Forming Finite Element Model

2011 ◽  
Vol 704-705 ◽  
pp. 674-679
Author(s):  
Dan Xia ◽  
Bin Shi Xu ◽  
Yao Hui Lv ◽  
Yi Jiang ◽  
Cun Long Liu

With considering the Marangoni convection in the molten pool on plasma direct metal forming process, a finite element model posed to describe and reflect the flow in the molten pool. Results of temperature distribution modeling prepared by plasma direct metal forming process of metal powders in an Ar environment were numerically obtained and compared with experimental data. Powders of Fe314 and base plates of R235 steel were taken as sample materials. In the experiment a multi-stream nozzle capable of delivering metal powder coaxially with the plasma arc was used. The model revealed that the velosity of the front part of the pool is a little slower than aft part. Marangoni convection reinforced the convection and enhanced the heat transfer. Profile of the model is the same as the experimental data. This allows us to conclude that the model can be applied for preselecting the process parameters. Keywords: plasma, rapid forming, temperature field, Marangoni convection.

2009 ◽  
Vol 76-78 ◽  
pp. 538-543
Author(s):  
Hei Jie Li ◽  
Zheng Yi Jiang ◽  
Dong Bin Wei ◽  
Yan Bing Du ◽  
Jing Tao Han ◽  
...  

With the technology advancement, crystal plasticity finite element modeling becomes more and more popular in the simulation of metal forming process. In order to obtain a better understanding of the difference between the Taylor model and finite element model during the simulation of metal forming process, an implicit time-integration procedure with the two polycrystal models is applied in the commercial finite element code ABAQUS to simulate the plane strain compression separately. FCC metal is used in this study. The simulation shows that the two polycrystal models both can predict the compression process approximately. The two modelling results of surface roughness show an agreement with that of the experimental results. However, the side profile calculated by the Taylor polycrystal model is much steeper and straighter than that of finite element polycrystal model. The experimental surface roughness curve shows a high frequency fluctuation. It is much steeper than those of the two models. The simulation results also show that the von Mises stress from the Taylor model is much higher than that of the finite element model.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


2021 ◽  
Author(s):  
Hussain AlBahrani ◽  
Nobuo Morita

Abstract In many drilling scenarios that include deep wells and highly stressed environments, the mud weight required to completely prevent wellbore instability can be impractically high. In such cases, what is known as risk-controlled wellbore stability criterion is introduced. This criterion allows for a certain level of wellbore instability to take place. This means that the mud weight calculated using this criterion will only constrain wellbore instability to a certain manageable level, hence the name risk-controlled. Conventionally, the allowable level of wellbore instability in this type of models has always been based on the magnitude of the breakout angle. However, wellbore enlargements, as seen in calipers and image logs, can be highly irregular in terms of its distribution around the wellbore. This irregularity means that risk-controlling the wellbore instability through the breakout angle might not be always sufficient. Instead, the total volume of cavings is introduced as the risk control parameter for wellbore instability. Unlike the breakout angle, the total volume of cavings can be coupled with a suitable hydraulics model to determine the threshold of manageable instability. The expected total volume of cavings is determined using a machine learning (ML) assisted 3D elasto-plastic finite element model (FEM). The FEM works to model the interval of interest, which eventually provides a description of the stress distribution around the wellbore. The ML algorithm works to learn the patterns and limits of rock failure in a supervised training manner based on the wellbore enlargement seen in calipers and image logs from nearby offset wells. Combing the FEM output with the ML algorithm leads to an accurate prediction of shear failure zones. The model is able to predict both the radial and circumferential distribution of enlargements at any mud weight and stress regime, which leads to a determination of the expected total volume of cavings. The model implementation is first validated through experimental data. The experimental data is based on true-triaxial tests of bored core samples. Next, a full dataset from offset wells is used to populate and train the model. The trained model is then used to produce estimations of risk-controlled stability mud weights for different drilling scenarios. The model results are compared against those produced by conventional methods. Finally, both the FEM-ML model and the conventional methods results are compared against the drilling experience of the offset wells. This methodology provides a more comprehensive and new solution to risk controlling wellbore instability. It relies on a novel process which learns rock failure from calipers and image logs.


2001 ◽  
Author(s):  
Y. W. Kwon ◽  
J. A. Lobuono

Abstract The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax’s biodynamical response from a projectile impact. The finite element model of the human thorax consists of the thoracic skeleton, heart, lungs, major arteries, major veins, trachea, and bronchi. The finite element model of the human thorax is validated by comparing the model’s results to experimental data obtained from cadavers wearing a protective body armor system undergoing a projectile impact.


Sign in / Sign up

Export Citation Format

Share Document