Photocatalytic degradation of a cyanuric acid, a recalcitrant species

2004 ◽  
Vol 162 (2-3) ◽  
pp. 323-328 ◽  
Author(s):  
Youn-Chul Oh ◽  
William S Jenks
1999 ◽  
Vol 1 (3) ◽  
pp. 463-466 ◽  
Author(s):  
Troy A. Tetzlaff ◽  
William S. Jenks

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2066 ◽  
Author(s):  
Syazwan Meriam Suhaimy ◽  
Chin Lai ◽  
Hairul Tajuddin ◽  
Emy Samsudin ◽  
Mohd Johan

There are various approaches to enhancing the catalytic properties of TiO2, including modifying its morphology by altering the surface reactivity and surface area of the catalyst. In this study, the primary aim is to enhance the photocatalytic activity by changing the TiO2 nanotubes’ architecture. The highly ordered infrastructure is favorable for a better charge carrier transfer. It is well known that anodization affects TiO2 nanotubes’ structure by increasing the anodization duration which in turn influence the photocatalytic activity. The characterizations were conducted by FE-SEM (fiend emission scanning electron microscopy), XRD (X-ray diffraction), RAMAN (Raman spectroscopy), EDX (Energy dispersive X-ray spectroscopy), UV-Vis (Ultraviolet visible spectroscopy) and LCMS/MS/MS (liquid chromatography mass spectroscopy). We found that the morphological structure is affected by the anodization duration according to FE-SEM. The photocatalytic degradation shows a photodegradation rate of k = 0.0104 min−1. It is also found that a mineralization of Simazine by our prepared TiO2 nanotubes leads to the formation of cyanuric acid. We propose three Simazine photodegradation pathways with several intermediates identified.


2016 ◽  
Vol 75 (5) ◽  
pp. 1128-1137 ◽  
Author(s):  
Shen-Ming Chen ◽  
Norman Lu ◽  
Jun-Yu Chen ◽  
Cheng-Yu Yang ◽  
Yun-Peng Yeh ◽  
...  

Simply coating 1 wt.% of platinum on titanium dioxide (TiO2) surface resulted in simple preparation of platinized TiO2 (Pt-TiO2). This study demonstrated the photodegradation of atrazine (ATZ) using either Pt-TiO2 or TiO2 as a photocatalyst under 352 nm light irradiation. The Pt-TiO2-catalyzed ATZ degradation reached 76% in 3 hours without adding H2O2 solution or aeration, which was more than 10% higher than the TiO2-catalyzed reaction. The decomposition product of Pt-TiO2-catalyzed ATZ degradation was mainly cyanuric acid. Thus, Pt-TiO2 as an effective photocatalyst has three main advantages in the photodegradation of ATZ under 352 nm irradiation. First, the coated Pt can facilitate the generation of appropriate amounts of OH radicals, so it can prevent the formation of over-oxidized TiO2. Second, aeration was not needed. Third, the excited electrons were mainly uni-directionally transferred to the catalyst surface to avoid recombination of electron-hole pairs.


2018 ◽  
Vol 18 (3) ◽  
pp. 81-91 ◽  
Author(s):  
C. Lalhriatpuia

Nanopillars-TiO2 thin films was obtained on a borosilicate glass substrate with (S1) and without (S2) polyethylene glycol as template. The photocatalytic behaviour of S1 and S2 thin films was assessed inthe degradation of methylene blue (MB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the SEM, XRD, FTIR and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data confirmed that the TiO2 particles are in its anatase mineral phase. The SEM and AFM images indicated the catalyst is composed with nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of MB was well studied at wide range of physico-chemical parameters. The effect of solution pH (pH 4.0 to 10.0) and MB initial concentration (1.0 to 10.0 mg/L) was extensively studied and the effect of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of MB was demonstrated. The maximum percent removal of MB was observed at pH 8.0 beyond which it started decreasing and a low initial concentration of the pollutant highly favoured the photocatalytic degradation using thin films and the presence of several interfering ions diminished the photocatalytic activity of thin films to some extent. The overall photocatalytic activity was in the order: S2 > S1 > UV. The photocatalytic degradation of MB was followed the pseudo-first-order rate kinetics. The mineralization of MB was studied with total organic carbon measurement using the TOC (total organic carbon) analysis.


2015 ◽  
Vol 8 (3) ◽  
pp. 2197-2221
Author(s):  
Theraviyum Chithambarathanu ◽  
M. Darathi ◽  
J. DaisyMagdaline ◽  
S. Gunasekaran

The molecular vibrations of Trichloro isocyanuric acid (C3Cl3N3O3) and Trithio cyanuric acid (C3H3N3S3) have been investigated in polycrystalline sample at room temperature by Fourier Transform Infrared (FT-IR) and FT-Raman spectroscopies in the region 4000-450 cm-1 and 4000-50 cm-1 respectively, which provide a wealth of structural information about the molecules. The spectra are interpreted with the aid of normal co-ordinate analysis following full structure optimization and force field calculations based on density functional theory   (DFT) using standard B3LYP / 6-311++ G (d, p) basis set for investigating the structural and spectroscopic properties. The vibrational frequencies are calculated and the scaled values are compared with experimental FT-IR and FT-Raman spectra. The scaled theoretical wave numbers shows very good agreement with experimental ones. The complete vibrational assignments are performed on the basis of potential energy distribution (PED) of vibrational modes, calculated with scaled quantum (SQM) method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that change in electron density (ED) in σ* and π* anti-bonding orbitals and second order delocalization   energy (E2) confirm the occurrence of Intra molecular Charge Transfer (ICT) within the molecule. The thermodynamic properties like heat capacity, entropy, enthalpy and zero point energy have been calculated for the molecule. The frontier molecular orbitals have been visualized and the HOMO-LUMO energy gap has been calculated. The Molecular Electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions in the molecule.


2018 ◽  
Vol 8 (4) ◽  
pp. 642-647
Author(s):  
Manohari J ◽  
Hima Bindu G ◽  
Divya Jyothi K ◽  
Vamsi Kumar Y

Sign in / Sign up

Export Citation Format

Share Document