Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder

1999 ◽  
Vol 127 (1-3) ◽  
pp. 107-110 ◽  
Author(s):  
Teruhisa Ohno ◽  
Fumihiro Tanigawa ◽  
Kan Fujihara ◽  
Shinobu Izumi ◽  
Michio Matsumura
2013 ◽  
Vol 788 ◽  
pp. 246-249 ◽  
Author(s):  
Zhi Wang ◽  
Zhi Qiang Yang

The dispersion of carbon doped titanium dioxide (TiO2) powder in aqueous solution was studied. The spectrophotometer method was used to determine the effects of dispersant additive ratio, ultrasonic time and pH value on the dispersion of TiO2. The results show that the carbon doped titanium dioxide aqueous solution was found to have the optimum dispersion performance when the mass ratio of sodium hexametaphosphate (SHMP)/TiO2/water is 1:50:100, the ultrasonic time is 15min and the pH value of the solution is 10.


2019 ◽  
Vol 15 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Siti Hajar Alias ◽  
Nurul Najidah Mohamed ◽  
Leaw Wai Loon ◽  
Sheela Chandren

Carbon self-doped titanium dioxide (C/TiO2) photocatalyst was synthesized by a simple sol-gel method using titanium isopropoxide as both the titanium precursor and carbon source. The effects of calcination temperatures in the range of 300 to 700 °C to the structure and physicochemical properties of the C/TiO2 were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray (EDX), Fourier transform infrared (FTIR) spectroscopy, UV-visible diffuse reflectance (UV-Vis DR) spectroscopy, photoluminescence spectroscopy, N2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS). XPS results proved the presence of self-doped carbon at the interstitial and substitutional lattice of TiO2. The C/TiO2 calcined at 300 and 400 °C (C/TiO2-300 and C/TiO2-400, respectively) showed mesoporous characteristic and large surface area of about 100 m2 g-1. The C/TiO2 photocatalysts were then tested in the photo-oxidation of styrene under visible light irradiation with aqueous hydrogen peroxide as the oxidizing agent. The C/TiO2 photocatalysts were successfully activated under the irradiation of visible light, where C/TiO2-300 and C/TiO2-400 showed the highest total concentration of products (benzaldehyde and styrene oxide) at 1.1 mmol and 1.0 mmol, respectively.For video presentation, kindly please visit this link:


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3523
Author(s):  
Radosław Krzosa ◽  
Łukasz Makowski ◽  
Wojciech Orciuch ◽  
Radosław Adamek

The deagglomeration of titanium-dioxide powder in water suspension performed in a stirring tank was investigated. Owing to the widespread applications of the deagglomeration process and titanium dioxide powder, new, more efficient devices and methods of predicting the process result are highly needed. A brief literature review of the application process, the device used, and process mechanism is presented herein. In the experiments, deagglomeration of the titanium dioxide suspension was performed. The change in particle size distribution in time was investigated for different impeller geometries and rotational speeds. The modification of impeller geometry allowed the improvement of the process of solid particle breakage. In the modelling part, numerical simulations of the chosen impeller geometries were performed using computational-fluid-dynamics (CFD) methods whereby the flow field, hydrodynamic stresses, and other useful parameters were calculated. Finally, based on the simulation results, the population-balance with a mechanistic model of suspension flow was developed. Model predictions of the change in particle size showed good agreement with the experimental data. Using the presented method in the process design allowed the prediction of the product size and the comparison of the efficiency of different impeller geometries.


2021 ◽  
Vol 224 ◽  
pp. 187-196
Author(s):  
Bahman Banaei ◽  
Amir Hessam Hassani ◽  
Farhang Tirgir ◽  
Abdolmajid Fadaei ◽  
Seyed Mehdi Borghaei

Sign in / Sign up

Export Citation Format

Share Document