Induction of tolerance by allochimeric class I MHC molecules: evidence of immunoregulatory T cells and limited usage of T cell receptor Vβ genes

2000 ◽  
Vol 191 (4) ◽  
pp. S50
Author(s):  
Rafik Ghobrial ◽  
Anna Mhoyan ◽  
Yuan Zhai ◽  
Xiu-Da Shen ◽  
Danyun Zhao ◽  
...  
1999 ◽  
Vol 96 (20) ◽  
pp. 11470-11475 ◽  
Author(s):  
J. Zerrahn ◽  
A. Volkmann ◽  
M. C. Coles ◽  
W. Held ◽  
F. A. Lemonnier ◽  
...  

1993 ◽  
Vol 177 (6) ◽  
pp. 1541-1550 ◽  
Author(s):  
S C Jameson ◽  
F R Carbone ◽  
M J Bevan

A previous report showed that the proliferative response of helper T cells to class II major histocompatibility complex (MHC)-restricted antigens can be inhibited by analogues of the antigen, which act as T cell receptor (TCR) antagonists. Here we define and analyze peptide variants that antagonize various functions of class I MHC-restricted cytotoxic T lymphocyte (CTL) clones. Of 64 variants at individual TCR contact sites of the Kb-restricted octamer peptide ovalbumin257-264 (OVAp), a very high proportion (40%) antagonized lysis by three OVAp-specific CTL clones. This effect was highly clone specific, since many antagonists for one T cell clone have differential effects on another. We show that this inhibition of CTL function is not a result of T cell-T cell interaction, precluding veto-like phenomena as a mechanism for antagonism. Moreover, we present evidence for direct interaction between the TCR and antagonist-MHC complexes. In further analysis of the T cell response, we found that serine esterase release and cytokine production are susceptible to TCR antagonism similarly to lysis. Ca2+ flux, an early event in signaling, is also inhibited by antagonists but may be more resistant to the antagonist effect than downstream responses.


1991 ◽  
Vol 174 (3) ◽  
pp. 639-648 ◽  
Author(s):  
H DerSimonian ◽  
H Band ◽  
M B Brenner

The T cell receptor repertoire has a potential for vast diversity. However, this diversity is limited by the fact that the majority of thymocytes die as the repertoire is shaped by positive and negative selection events during development. Such thymic selection affecting TCR V beta gene segment usage has been demonstrated in the mouse. However, similar data has not been forthcoming in man, and little is known about the role of the TCR alpha chain in antigen/major histocompatibility complex (MHC) recognition in any species. Here, we used a monoclonal antibody recognizing the TCR V alpha 12.1 gene product to assess the expression of this gene in the peripheral blood of man. In most individuals tested, the percentage of cells expressing V alpha 12.1 was significantly higher in CD8+ T cells than in CD4+ T cells. That the V alpha gene product itself was responsible for this increased expression in CD8+ T cells was underscored by the lack of substantial skewing of V beta usage in the V alpha 12.1-bearing T cells. Moreover, the skewed expression of V alpha 12.1 was already present at birth, indicating that it was likely to be due to a developmental process rather than the result of exposure to environmental antigens. Based on the established role for CD8 in binding to class I MHC molecules, we suggest that increased expression of V alpha 12.1 on CD8+ T cells points to a role for TCR's using V alpha 12.1 in class I MHC/Ag recognition. These results indicate that V alpha gene usage in the peripheral blood of man is not random, and they support a role for V alpha as a participant in the self-MHC recognition process that shapes the TCR repertoire.


1989 ◽  
Vol 169 (5) ◽  
pp. 1619-1630 ◽  
Author(s):  
S Marusić-Galesić ◽  
D L Longo ◽  
A M Kruisbeek

T cells recognize foreign antigens together with those MHC glycoproteins they have encountered during their development in the thymus. How the repertoire of antigen-specific TCRs is selected has not yet been fully defined. We have investigated the T cell repertoire specificities of CD4-CD8+ cytotoxic T cells developing under conditions where one of the class I MHC-encoded molecules is blocked, while other class I-MHC glycoproteins are still expressed. We show that antigen-specific T cells restricted to the blocked class I fail to develop, while generation of other class I-specific T cell proceeds undisturbed. This highly selective perturbation of the T cell receptor repertoire demonstrates that development of CD4-CD8+ T cells with a certain TCR specificity requires expression of particular alleles of class I MHC. Thus, TCR-MHC interactions provide signals essential to the differentiation of precursor T cells.


1997 ◽  
Vol 271 (2) ◽  
pp. 278-293 ◽  
Author(s):  
Hsiu-Ching Chang ◽  
Alex Smolyar ◽  
Rebecca Spoerl ◽  
Torsten Witte ◽  
Yasuko Yao ◽  
...  

1996 ◽  
Vol 52 (a1) ◽  
pp. C218-C218 ◽  
Author(s):  
D. N. Garboczi ◽  
P. Ghosh ◽  
U. Utz ◽  
W. E. Biddison ◽  
D. C. Wiley

2009 ◽  
Vol 206 (10) ◽  
pp. 2253-2269 ◽  
Author(s):  
Kensuke Takada ◽  
Stephen C. Jameson

Previous studies have suggested that naive CD8 T cells require self-peptide–major histocompatability complex (MHC) complexes for maintenance. However, interpretation of such studies is complicated because of the involvement of lymphopenic animals, as lymphopenia drastically alters naive T cell homeostasis and function. In this study, we explored naive CD8 T cell survival and function in nonlymphopenic conditions by using bone marrow chimeric donors and hosts in which class I MHC expression is absent or limited to radiosensitive versus radioresistant cells. We found that long-term survival of naive CD8 T cells (but not CD4 T cells) was impaired in the absence of class I MHC. However, distinct from this effect, class I MHC deprivation also enhanced naive CD8 T cell responsiveness to low-affinity (but not high-affinity) peptide–MHC ligands. We found that this improved sensitivity was a consequence of up-regulated CD8 levels, which was mediated through a transcriptional mechanism. Hence, our data suggest that, in a nonlymphopenic setting, self-class I MHC molecules support CD8 T cell survival, but that these interactions also attenuate naive T cell sensitivity by dynamic tuning of CD8 levels.


Sign in / Sign up

Export Citation Format

Share Document