Internal barrier for an enclosed MEMS device

2017 ◽  
Vol 2017 (2) ◽  
pp. 13
Keyword(s):  
Author(s):  
Erika Schutte ◽  
Jack Martin

Abstract An ellipsometry based measurement protocol was developed to evaluate changes to MEMS sensor surfaces which may occur during packaging using unpatterned test samples. This package-level technique has been used to measure the 0-20 Angstrom thin films that can form or deposit on die during the packaging process for a variety of packaging processing conditions. Correlations with device performance shows this to be a useful tool for packaged MEMS device and process characterization.


2014 ◽  
Vol 23 (3) ◽  
pp. 661-671 ◽  
Author(s):  
Giuseppe Vitellaro ◽  
Gaetano L'Episcopo ◽  
Carlo Trigona ◽  
Bruno Ando ◽  
Salvatore Baglio

2017 ◽  
Vol 24 (6) ◽  
pp. 2753-2764 ◽  
Author(s):  
G. S. Abarca-Jiménez ◽  
J. Mares-Carreño ◽  
M. A. Reyes-Barranca ◽  
B. Granados-Rojas ◽  
S. Mendoza-Acevedo ◽  
...  

Author(s):  
Ivan Torres ◽  
Luci Eland ◽  
Christopher Redfern ◽  
John Hedley
Keyword(s):  

2020 ◽  
Vol 11 (1) ◽  
pp. 35-54
Author(s):  
Paolo Di Barba ◽  
Luisa Fattorusso ◽  
Mario Versaci

AbstractThe recovery of the membrane profile of an electrostatic micro-electro-mechanical system (MEMS) device is an important issue because, when applying an external voltage, the membrane deforms with the consequent risk of touching the upper plate of the device (a condition that should be avoided). Then, during the deformation of the membrane, it is useful to know if this movement admits stable equilibrium configurations. In such a context, our present work analyze the behavior of an electrostatic 1D membrane MEMS device when an external electric voltage is applied. In particular, starting from a well-known second-order elliptical semi-linear di erential model, obtained considering the electrostatic field inside the device proportional to the curvature of the membrane, the only possible equilibrium position is obtained, and its stability is analyzed. Moreover, considering that the membrane has an inertia in moving and taking into account that it must not touch the upper plate of the device, the range of possible values of the applied external voltage is obtained, which accounted for these two particular operating conditions. Finally, some calculations about the variation of potential energy have identified optimal control conditions.


2010 ◽  
Vol 4 (2) ◽  
pp. 110-116 ◽  
Author(s):  
Kiwamu Ashida ◽  
◽  
Shizuka Nakano ◽  
Jaehyuk Park ◽  
Jun Akedo

Many micro-scale devices have been developed by applying micro-electro-mechanical systems (MEMS) technology, but MEMS production facilities are large and costly, making it difficult to develop small numbers of trial devices. The novel on-demand MEMS device production system we developed applies two major concepts – that of the microfactory and the introduction of non-MEMS processes in microfabrication. These two concepts have made manufacturing more ecological, economical, agile, and flexible through downsizing, forming an automated production line by connecting standardized unit-processing cells, each of which has a desktop process, a part transfer robot, and a standardized connection interface. These enable any process cell to be connected in any sequence that the target product requires. Four unit-process cells were developed – the micropress cell for fabricating microstructures from thin sheet metal and the miniature aerosol deposition (AD) process cell for fabricating high-performance piezoelectric (PZT) ceramics actuators. The feasibility of the on-demand MEMS production system was demonstrated by the fabrication of a MEMS-like micromirror scanner, proving the potential of on-demand MEMS production in diversified small-lot production.


2021 ◽  
Vol 63 (7) ◽  
pp. 975
Author(s):  
А.П. Клинов ◽  
М.А. Мазо ◽  
В.В. Смирнов

The thermal conductivity of a one-dimensional chain of rotators with a double-barrier interaction potential of nearest neighbors has been studied numerically. We show that the height of the "internal" barrier, which separates topologically nonequivalent degenerate states, significantly affects the temperature dependence of the heat conductivity of the system. The small height of this barrier leads to the dominant contribution of the non-linear normal modes at low temperatures. In such a case the coefficient of thermal conductivity turns out to be the risen function of the temperature. The growth of the coefficient is limited by local fluctuations corresponding to jumps over the barriers. At higher values of the internal barrier height, dependence of the heat conductivity on temperature is similar to that of classical rotators.


Sign in / Sign up

Export Citation Format

Share Document