Detecting the 10 Angstroms That Change MEMS Performance

Author(s):  
Erika Schutte ◽  
Jack Martin

Abstract An ellipsometry based measurement protocol was developed to evaluate changes to MEMS sensor surfaces which may occur during packaging using unpatterned test samples. This package-level technique has been used to measure the 0-20 Angstrom thin films that can form or deposit on die during the packaging process for a variety of packaging processing conditions. Correlations with device performance shows this to be a useful tool for packaged MEMS device and process characterization.

1997 ◽  
Vol 473 ◽  
Author(s):  
Michael Lane ◽  
Robert Ware ◽  
Steven Voss ◽  
Qing Ma ◽  
Harry Fujimoto ◽  
...  

ABSTRACTProgressive (or time dependent) debonding of interfaces poses serious problems in interconnect structures involving multilayer thin films stacks. The existence of such subcriticai debonding associated with environmentally assisted crack-growth processes is examined for a TiN/SiO2 interface commonly encountered in interconnect structures. The rate of debond extension is found to be sensitive to the mechanical driving force as well as the interface morphology, chemistry, and yielding of adjacent ductile layers. In order to investigate the effect of interconnect structure, particularly the effect of an adjacent ductile Al-Cu layer, on subcriticai debonding along the TiN/SiO2 interface, a set of samples was prepared with Al-Cu layer thicknesses varying from 0.2–4.0 μm. All other processing conditions remained the same over the entire sample run. Results showed that for a given crack growth velocity, the debond driving force scaled with Al-Cu layer thickness. Normalizing the data by the critical adhesion energy allowed a universal subcriticai debond rate curve to be derived.


2018 ◽  
Vol 8 (7) ◽  
pp. 1127 ◽  
Author(s):  
Chongsei Yoon ◽  
Buil Jeon ◽  
Giwan Yoon

In this paper, we present a study of various ZnO/SiO2-stacked thin film structures for flexible micro-energy harvesting devices. Two groups of micro-energy harvesting devices, SiO2/ZnO/SiO2 micro-energy generators (SZS-MGs) and ZnO/SiO2/ZnO micro-energy generators (ZSZ-MGs), were fabricated by stacking both SiO2 and ZnO thin films, and the resulting devices were characterized. With a particular interest in the fabrication of flexible devices, all the ZnO and SiO2 thin films were deposited on indium tin oxide (ITO)-coated polyethylene naphthalate (PEN) substrates using a radio frequency (RF) magnetron sputtering technique. The effects of the thickness and/or position of the SiO2 films on the device performance were investigated by observing the variations of output voltage in comparison with that of a control sample. As a result, compared to the ZnO single-layer device, all the ZSZ-MGs showed much better output voltages, while all the SZS-MG showed only slightly better output voltages. Among the ZSZ-MGs, the highest output voltages were obtained from the ZSZ-MGs where the SiO2 thin films were deposited using a deposition power of 150 W. Overall, the device performance seems to depend significantly on the position as well as the thickness of the SiO2 thin films in the ZnO/SiO2-stacked multilayer structures, in addition to the processing conditions.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6346
Author(s):  
Mohammad H Hasan ◽  
Ali Al-Ramini ◽  
Eihab Abdel-Rahman ◽  
Roozbeh Jafari ◽  
Fadi Alsaleem

This work presents an approach to delay-based reservoir computing (RC) at the sensor level without input modulation. It employs a time-multiplexed bias to maintain transience while utilizing either an electrical signal or an environmental signal (such as acceleration) as an unmodulated input signal. The proposed approach enables RC carried out by sufficiently nonlinear sensory elements, as we demonstrate using a single electrostatically actuated microelectromechanical system (MEMS) device. The MEMS sensor can perform colocalized sensing and computing with fewer electronics than traditional RC elements at the RC input (such as analog-to-digital and digital-to-analog converters). The performance of the MEMS RC is evaluated experimentally using a simple classification task, in which the MEMS device differentiates between the profiles of two signal waveforms. The signal waveforms are chosen to be either electrical waveforms or acceleration waveforms. The classification accuracy of the presented MEMS RC scheme is found to be over 99%. Furthermore, the scheme is found to enable flexible virtual node probing rates, allowing for up to 4× slower probing rates, which relaxes the requirements on the system for reservoir signal sampling. Finally, our experiments show a noise-resistance capability for our MEMS RC scheme.


Author(s):  
Hong-Yu Li ◽  
Masaya Kawano ◽  
Simon Lim ◽  
Daniel Ismael Cereno ◽  
Vasarla Nagendra Sekhar

2020 ◽  
Vol 8 (12) ◽  
pp. 4234-4245 ◽  
Author(s):  
Carlos Gumiel ◽  
Teresa Jardiel ◽  
David G. Calatayud ◽  
Thomas Vranken ◽  
Marlies K. Van Bael ◽  
...  

BiFeO3 single-phase thin films with an effective and tuneable multiferroic response are obtained in aqueous media by using mild processing conditions.


2015 ◽  
Vol 3 (37) ◽  
pp. 9650-9656 ◽  
Author(s):  
Ye Feng ◽  
Bing Yu ◽  
Guanming Cheng ◽  
Tszki Lau ◽  
Zhaohui Li ◽  
...  

The element contents and the annealing parameters, such as the peak annealing temperature, H2S concentration and the ramping rate, would strongly affect the remaining Sn contents in the Cu2ZnSnS4 thin films and greatly influence the device performance.


Sign in / Sign up

Export Citation Format

Share Document