Oil Erosion in an Annular Flume by Seawater of Varying Turbidities: A Critical Bed Shear Stress Approach

2002 ◽  
Vol 8 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Danielle Cloutier ◽  
Carl L. Amos ◽  
Philip R. Hill ◽  
Kenneth Lee
2005 ◽  
Vol 32 (4) ◽  
pp. 658-664 ◽  
Author(s):  
M Stone ◽  
B G Krishnappan

Morphology of particle populations of cohesive sediment were examined during settling experiments in an annular flume with different initial sediment concentrations (200 and 350 mg/L) at constant bed shear stress (0.121 N/m2) using fractal dimensions. The area, longest axis, and perimeter of suspended solids were measured with light microscopy and an image-analysis system to determine three fractal dimensions (D, D1, D2). The ratio between the initial and steady state (time T = 300 min) sediment concentration was 0.54 for both experimental runs and is a function of bed shear stress, not the initial sediment concentration. The fractal dimension D changed from 1.32 at the start of the experiment to 1.36 at steady state, which represents an increase in shape irregularity of larger particles over time compared with smaller particles. At steady state, D1 and D2 were 1.19 and 1.66, respectively. Small increases in D1 and D2 over time indicated a change in morphology towards longer and more elongated particles. The D2 measurements in the present study indicate that differential sedimentation is the predominant flocculation mechanism of cohesive sediments in the flume settling experiments. Fractal dimensions of suspended solids were not significantly different at steady state as a function of initial sediment concentration.Key words: particle morphology, fractal dimensions, cohesive sediment, flocculation, deposition, annular flume.


2003 ◽  
Vol 34 (1-2) ◽  
pp. 125-138 ◽  
Author(s):  
David Milburn ◽  
B.G. Krishnappan

A large volume sample of river-bed cohesive sediment and water from Hay River, Northwest Territories, Canada was collected during a spring field program in 2000 as part of a study on under-ice movement of sediment just before breakup. Controlled laboratory experiments were subsequently conducted on the Hay River water/sediments in a rotating annular flume at Burlington, Ontario, Canada to better understand the deposition and erosion processes of cohesive sediment transport. The deposition experiments in the rotating flume confirmed that the Hay River sediment is cohesive and the critical shear stress for deposition and the rates of deposition are a function of bed shear stress and the initial concentration of the sediment in suspension. The erosion experiments provided quantitative data on the critical shear stress for erosion and the rates of erosion as a function of bed shear stress and the age of the sediment deposit. The erosion experiments also indicated that the growth of the biofilm had an influence on the erosion characteristics of the Hay River sediment. Based on the data from the rotating circular flume experiments, a modelling strategy is proposed for calculating the under-ice transport of the cohesive sediments in the Hay River.


1996 ◽  
Vol 33 (9) ◽  
pp. 163-170 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul

Research was undertaken in order to identify possible methodologies for the prediction of sedimentation in storage chambers based on computational fluid dynamics (CFD). The Fluent CFD software was used to establish a numerical model of the flow field, on which further analysis was undertaken. Sedimentation was estimated from the simulated flow fields by two different methods. The first approach used the simulation to predict the bed shear stress distribution, with deposition being assumed for areas where the bed shear stress fell below a critical value (τcd). The value of τcd had previously been determined in the laboratory. Efficiency was then calculated as a function of the proportion of the chamber bed for which deposition had been predicted. The second method used the particle tracking facility in Fluent and efficiency was calculated from the proportion of particles that remained within the chamber. The results from the two techniques for efficiency are compared to data collected in a laboratory chamber. Three further simulations were then undertaken in order to investigate the influence of length to breadth ratio on chamber performance. The methodology presented here could be applied to complex geometries and full scale installations.


2021 ◽  
Author(s):  
Grace Chang ◽  
Galen Egan ◽  
Joseph D McNeil ◽  
Samuel McWilliams ◽  
Craig Jones ◽  
...  

1985 ◽  
pp. 115-121
Author(s):  
Susumu HASHIMOTO ◽  
Yoshitaka FUKUI ◽  
Hideo KIKKAWA

Author(s):  
Yan He ◽  
Jing Zhang ◽  
Huling Jiang ◽  
Zhixue Guo ◽  
Hongxi Zhao

2018 ◽  
Vol 85 ◽  
pp. 241-245
Author(s):  
Qian Zhang ◽  
Zheng Gong ◽  
Changkuan Zhang ◽  
Jessica R. Lacy ◽  
Bruce E. Jaffe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document