Superplastic deformation mechanism in powder metallurgy magnesium alloys and composites

2001 ◽  
Vol 49 (11) ◽  
pp. 2027-2037 ◽  
Author(s):  
H. Watanabe ◽  
T. Mukai ◽  
M. Mabuchi ◽  
K. Higashi
Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 606
Author(s):  
César Palacios-Trujillo ◽  
José Victoria-Hernández ◽  
David Hernández-Silva ◽  
Dietmar Letzig ◽  
Marco A. García-Bernal

Magnesium alloys usually exhibit excellent superplasticity at high temperature. However, many Mg alloys have poor formation ability near room temperature. Therefore, preparation of Mg alloys with suitable microstructures to show low or intermediate temperature superplasticity is an important goal. In this work, the superplastic behavior at intermediate temperatures of a commercial ZK60 magnesium alloy processed by indirect extrusion was investigated. After extrusion, the alloy showed a refined and homogeneous microstructure with an average grain size of 4 ± 2 μm. Overall texture measurement indicated that the alloy showed a strong prismatic texture with the highest intensity oriented to pole ⟨101¯0⟩. A texture component ⟨1¯21¯1⟩ parallel to the extrusion direction was found; this type of texture is commonly observed in Mg alloys with rare earth additions. Tensile tests were performed at temperatures of 150, 200, and 250 °C at three strain rates of 10−2, 10−3, and 10−4 s−1. A very high ductility was found at 250 °C and 10−4 s−1, resulting in an elongation to failure of 464%. Based on calculations of the activation energy and on interpretation of the deformation mechanism map for magnesium alloys, it was concluded that grain boundary sliding (GBS) is the dominant deformation mechanism.


2021 ◽  
pp. 130251
Author(s):  
Xiaodong Liu ◽  
Lingying Ye ◽  
Jianguo Tang ◽  
Yu Dong ◽  
Bin Ke

2018 ◽  
Vol 8 (4) ◽  
pp. 538-542
Author(s):  
P. Minárik ◽  
T. Vávra ◽  
J. Stráský ◽  
B. Hadzima ◽  
R. Král

2020 ◽  
Vol 1000 ◽  
pp. 115-122
Author(s):  
Nono Darsono ◽  
Murni Handayani ◽  
Franciska Pramuji Lestari ◽  
Aprilia Erryani ◽  
I Nyoman Gede Putrayasa ◽  
...  

Magnesium Alloys have the potential to be applied in the various fields of applications including biomaterials. Magnesium Alloys are an interesting alloy due to its high strength to density ratio. They have been proposed as a biodegradable implant material due to its friendly effect to human body compared to another alloy. Besides its good biodegradable properties, it has a disadvantage of low hardness and corrosion properties. In order to overcome this, it has been combined with other metals such as Zinc (Zn) or Copper (Cu). To increase mechanical properties, we used Carbon Nanotubes (CNT) as reinforcement. Magnesium-Zinc (Mg-xZn) CNTs composites with several compositions was prepared by using powder metallurgy and sintered in the presence of flowing Argon (Ar) gas in tube furnace. Mg-Zn Alloy with the composition of 4% and 6% of Zn and the variation of CNTs at 0.1%, 0.3 %, and 0.5% was also prepared. Hardness testing by using microvickers showed that CNTs can increase the alloy hardness which the maximum hardness is 53.6 HV. The corrosion rates as low as 175.5 mpy exhibited for the Mg-Alloy with the composition of Mg-4-Zn with 0.1 wt.% of CNTs


2009 ◽  
Vol 176 ◽  
pp. 012045
Author(s):  
Atsushi Tanaka ◽  
Syota Yoshimura ◽  
Takuya Fujima ◽  
Ken-ichi Takagi

Sign in / Sign up

Export Citation Format

Share Document