Crack growth in discontinuous glass fibre reinforced polypropylene under dynamic and static loading conditions

2002 ◽  
Vol 33 (11) ◽  
pp. 1539-1547 ◽  
Author(s):  
A Pegoretti ◽  
T Ricco
2005 ◽  
Vol 473-474 ◽  
pp. 189-194
Author(s):  
Zilia Csomós ◽  
János Lukács

E-glass fibre reinforced polyester matrix composite was investigated, which was made by pullwinding process. Round three point bending (RTPB) specimens were tested under quasi-static and mode I cyclic loading conditions. Load vs. displacement (F-f), load vs. crack opening displacement (F-v) and crack opening displacement range vs. number of cycles (ΔCOD-N) curves were registered and analysed. Interfacial cracks were caused the final longitudinal fracture of the specimens under quasi-static and cyclic loading conditions.


Author(s):  
P K Rakesh ◽  
I Singh ◽  
D Kumar

Drilling is one of the most commonly used process for hole making. Drilling of polymer matrix composites (PMCs) causes substantial damage around the drilled hole. Drilling-induced damage not only decreases the strength of the composite laminate with hole, but it also deteriorates the long-term performance of the PMC laminates under different loading conditions. In the present research investigation, the flexural behaviour of the glass fibre-reinforced plastic laminates with drilled hole was experimentally investigated under three-point loading conditions. The results of the experimental investigation were compared with those of the finite element model and were found to be in close agreement.


1986 ◽  
Vol 108 (1) ◽  
pp. 37-43 ◽  
Author(s):  
J. A. Kapp ◽  
D. Duquette ◽  
M. H. Kamdar

Crack growth rate measurements have been made in three mercury embrittled aluminum alloys each under three loading conditions. The alloys were 1100-0, 6061-T651, and 7075-T651. The loading conditions were fixed displacement static loading, fixed load static loading, and fatigue loading at two frequencies. The results showed that mercury cracking of aluminum was not unlike other types of embrittlement (i.e. hydrogen cracking of steels). Under fixed load static conditions no crack growth was observed below a threshold stress intensity factor (KILME). At K levels greater than KILME cracks grew on the order of cm/s, while under fixed displacement loading, the crack growth rate was strongly dependent upon the strength of the alloy tested. This was attributed to crack closure. In the fatigue tests, no enhanced crack growth occurred until a critical range of stress intensity factor (ΔKth) was achieved. The ΔKth agreed well with the KILME obtained from the static tests, but the magnitude of the fatigue growth rate was substantially less than was expected based on the static loading results. Observations of the fracture surfaces in the SEM suggested a brittle intergranular fracture mode for the 6061-T651 and the 7075-T651 alloys under all loading conditions. The fractographic features of the 1100-0 alloy under fixed load and fatigue loading conditions were also brittle intergranular. Under fixed displacement loading the cracks grew via a ductile intergranular mode.


Sign in / Sign up

Export Citation Format

Share Document