Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites

1999 ◽  
Vol 30 (3) ◽  
pp. 309-320 ◽  
Author(s):  
A. Valadez-Gonzalez ◽  
J.M. Cervantes-Uc ◽  
R. Olayo ◽  
P.J. Herrera-Franco
2011 ◽  
Vol 410 ◽  
pp. 122-125 ◽  
Author(s):  
J.M. Byeon ◽  
Gi Beop Nam ◽  
J.W. Kim ◽  
B.S. Kim ◽  
Jung I. Song

In this study, Jute fibers reinforced polypropylene (JFRP) composites were manufactured by injection molding technique. Prior to fabrication of composites, fiber surface was treated by Alkali and Plasma for a rise in fibers properties. Furthermore, after the alkali treatment attempt plasma treatment for the fiber surface treatment to obtain a batter value. In order to improve the affinity and adhesion between fibers and thermoplastic matrices during manufacturing, Maleic anhydride (MA) as a coupling agent have been employed. Untreated and treated surfaces of jute fibers were characterized using SEM. Tensile and flexural tests were carried out to evaluate the composite mechanical properties. Tensile test indicated that 3% of the alkali treatment and 2min plasma treatment fiber has highest tensile strength.


2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


Author(s):  
Haasith Chittimenu ◽  
Monesh Pasupureddy ◽  
Chandrasekar Muthukumar ◽  
Senthilkumar Krishnasamy ◽  
Senthil Muthu Kumar Thiagamani ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Celal Çakıroğlu ◽  
Gebrail Bekdaş

In the recent years natural fiber reinforced composites are increasingly receiving attention from the researchers and engineers due to their mechanical properties comparable to the conventional synthetic fibers and due to their ease of preparation, low cost and density, eco-friendliness and bio-degradability. Natural fibers such as kenaf or flux are being considered as a viable replacement for glass, aramid or carbon. Extensive experimental studies have been carried out to determine the mechanical behavior of different natural fiber types such as the elastic modulus, tensile strength, flexural strength and the Poisson’s ratio. This paper presents a review of the various experimental studies in the field of fiber reinforced composites while summarizing the research outcome about the elastic properties of the major types of natural fiber reinforced composites. Furthermore, the performance of a kenaf reinforced composite plate is demonstrated using finite element analysis and results are compared to a glass fiber reinforced laminated composite plate.


Sign in / Sign up

Export Citation Format

Share Document