Chromosome aberrations induced in human lymphocytes by in vitro and in vivo X-rays

Author(s):  
Heike Schröder ◽  
Anna Heimers
1984 ◽  
Vol 3 (3) ◽  
pp. 173-191 ◽  
Author(s):  
Manjula Jaju ◽  
Madhuri Jaju ◽  
Y.R. Ahuja

A large number of drugs have been introduced into man's environment in recent years, many of which have been shown to have mutagenic, teratogenic and carcinogenic effects. Keeping in view the potential hazardous effects of drugs and chemicals, it is desirable to test new drugs for their genotoxic effects prior to widespread use. 1 In the present investigation genetic effects of ampicillin and carbenicillin were studied in vitro in human lymphocytes using a number of end-points. 2 These drugs were added at a range of concentrations and times during a 72h culture period. Concentrations corresponding to the plasma level after receiving therapeutic doses as well as concentrations higher than the plasma levels were examined. 3 Neither drug affected the frequency of chromosome aberrations, satellite associations, mitotic index and cell turnover rate at plasma level concentrations. However, all these parameters were affected at higher concentrations. 4 The frequency of SCEs was not increased with both the drugs irrespective of the concentrations or durations of treatment, suggesting that the mechanisms leading to the formation of SCEs and chromosome aberrations are different. 5 Both ampicillin and carbenicillin were genetically non-toxic for the end points measured and non-clastogenic in vitro at therapeutic doses. However, previous studies have shown ampicillin to be clastogenic in vivo. 6 For evaluation of genetic toxicity, drugs should be tested both in vitro and in vivo.


2019 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Daniel Gyingiri Achel ◽  
Miguel Alcaraz-Saura ◽  
Julián Castillo ◽  
Amparo Olivares ◽  
Miguel Alcaraz

Although different studies have demonstrated different applications of Pycnanthus angolensis extracts in traditional African and Asian medicine, its possible antimutagenic or genoprotective capacities have never been explored. We studied these capabilities of Pycnanthus angolensis seed extract (PASE) by means of the two micronucleus assays, determining the frequency of micronucleus (MN) yield in mouse bone marrow (in vivo) and in human lymphocytes blocked by cytochalasin B (in vitro). PASE exhibited a significant genoprotective capacity (p < 0.001) against X-rays with a protection factor of 35% in both in vivo and in vitro assays. Further, its radioprotective effects were determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) cell viability test in two cell lines: one being radiosensitive (i.e., human prostate epithelium (PNT2) cells) and the other being radioresistant (i.e., B16F10 melanoma cells). In the radiosensitive cells, PASE showed a protection factor of 35.5%, thus eliminating 43.8% of X-ray-induced cell death (p < 0.001) and a dose reduction factor of 2.5. In the radioresistant cells, a protection factor of 29% (p < 0.001) with a dose reduction factor of 4 was realized. PASE elicited a greater radioprotective capacity than the substances currently used in radiation oncology and, thus, could be developed as a nutraceutical radioprotectant for workers and patients exposed to ionizing radiation.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Allison M. Khoo ◽  
Sang Hyun Cho ◽  
Francisco J. Reynoso ◽  
Maureen Aliru ◽  
Kathryn Aziz ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


1988 ◽  
Vol 15 (3) ◽  
pp. 219-223
Author(s):  
Jørgen Clausen ◽  
Søren Achim Nielsen

The mixed-function oxygenase system involved in the metabolism of drugs and xenobiotics has been extensively studied in various animal species and in various organs (1). It is now apparent that in humans the p-450 complex is one representative of a related family, expressed by 13 c-DNA genes showing approximately 36% similarity between the different subfamilies (2). In order to compare the in vivo and in vitro metabolic effects of drugs and xenobiotics, the induction capabilities of the mixed-function oxygenase must be known. The most sensitive non-isotopic assay system for determination of mixed-function oxygenase activity is the method of Nebert & Gelboin (3,4), which is based on the metabolic transformation of benzo-(a)-pyrene to its fluorescent hydroxyl derivatives (5). However, the levels of the mixed-function oxygenase enzymes in different cellular systems show great variations, with the highest activities in liver cells. Therefore, in order to use human lymphocytes and other cellular systems with low mixed-function oxygenase activities, the assay method for determining oxygenase activity must have the highest possible sensitivity. The present communication is devoted to a study aimed at increasing the sensitivity of Nebert & Gelboin's methods for assay of mixed-function oxygenase subfamilies using benzo-(a)-pyrene as a substrate.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Himanshu Kushwah ◽  
Nidhi Sandal ◽  
Meenakshi Chauhan ◽  
Gaurav Mittal

Abstract Background Uncontrolled bleeding is one of the primary reasons for preventable death in both civilian trauma and military battle field. This study evaluates in vitro and in vivo hemostatic potential of four biopolymeric natural gums, namely, gum tragacanth, guar gum, xanthan gum, and gum acacia. In vitro evaluation of whole blood clotting time and erythrocyte agglutination assay were carried out. In vitro cytotoxicity studies with respect to each gum were done in human lymphocytes to ascertain percent cell viability. In vivo hemostatic potential of each gum (as sponge dressing and powder form) was evaluated in Sprague Dawley rats using tail bleeding assay and compared with commercially available hemostatic sponge. Other important parameters like (a) time taken for complete hemostasis, (b) amount of blood absorbed, (c) adherence strength of developed hemostatic dressing(s), (d) incidence of re-bleeding, and (e) survival of animals were also studied. Results Of the four test gums studied, xanthan gum (@3mg/ml of blood) and gum tragacanth (@35mg/ml of blood) were able to clot blood in least time (58.75±6.408 s and 59.00±2.082 s, respectively) and exhibited very good hemostatic potential in vitro. Except for xanthan gum, all other test gums did not exhibit any significant cytotoxicity at different time points till 24 h. In rat tail bleeding experiments, gum tragacanth sponge dressing and powder achieved hemostasis in least time (156.2±12.86 s and 76±12.55 s, respectively) and much earlier than commercially available product (333.3±38.84 s; p˂0.01). Conclusion Results indicate potential of gum tragacanth to be developed into a suitable hemostatic product.


1996 ◽  
Vol 16 (4) ◽  
pp. 1805-1812 ◽  
Author(s):  
J Zhu ◽  
R H Schiestl

Chromosome aberrations may cause cancer and many heritable diseases. Topoisomerase I has been suspected of causing chromosome aberrations by mediating illegitimate recombination. The effects of deletion and of overexpression of the topoisomerase I gene on illegitimate recombination in the yeast Saccharomyces cerevisiae have been studied. Yeast transformations were carried out with DNA fragments that did not have any homology to the genomic DNA. The frequency of illegitimate integration was 6- to 12-fold increased in a strain overexpressing topoisomerase I compared with that in isogenic control strains. Hot spot sequences [(G/C)(A/T)T] for illegitimate integration target sites accounted for the majority of the additional events after overexpression of topoisomerase I. These hot spot sequences correspond to sequences previously identified in vitro as topoisomerase I preferred cleavage sequences in other organisms. Furthermore, such hot spot sequences were found in 44% of the integration events present in the TOP1 wild-type strain and at a significantly lower frequency in the top1delta strain. Our results provide in vivo evidence that a general eukaryotic topoisomerase I enzyme nicks DNA and ligates nonhomologous ends, leading to illegitimate recombination.


Sign in / Sign up

Export Citation Format

Share Document