Influence of the surface charge on the permeate flux in the dead-end filtration with ceramic membranes

2001 ◽  
Vol 25 (1-3) ◽  
pp. 501-508 ◽  
Author(s):  
T. Moritz ◽  
S. Benfer ◽  
P. Árki ◽  
G. Tomandl
2004 ◽  
Vol 50 (12) ◽  
pp. 317-325 ◽  
Author(s):  
H. Yonekawa ◽  
Y. Tomita ◽  
Y. Watanabe

This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 481
Author(s):  
Daniel Polak ◽  
Izabela Zielińska ◽  
Maciej Szwast ◽  
Igor Kogut ◽  
Artur Małolepszy

The aim of this work is to develop a new type of carbon-ceramic membranes for the removal of pharmaceutical substances from water. The membranes were prepared by the chemical modification method using an organosilicon precursor—octadecyltrichlorosilane (ODTS). Graphene oxide, multi-walled carbon nanotubes with carboxylic groups, and single-walled carbon nanotubes were used in the modification process. The filtration properties and adsorption properties of the developed membranes were tested. In order to characterize the membrane, the water permeability, the change of the permeate flux in time, and the adsorbed mass of the substance were determined. Additionally, the surface properties of the membranes were characterized by contact angle measurements and porosimetry. The antibiotic tetracycline was used in the adsorption tests. Based on the results, the improved adsorption properties of the modified membrane in relation to the unmodified membrane were noticed. Novel ceramic membranes modified with MWCNT are characterized by 45.4% removal of tetracycline and permeate flux of 520 L·h·m−2·bar−1. We demonstrated the ability of modified membranes to adsorb pharmaceuticals from water streams that are in contact with the membrane. Novel membranes retain their filtration properties. Therefore, such membranes can be used in an integrated filtration–adsorption process.


2015 ◽  
Vol 112 (44) ◽  
pp. 13467-13472 ◽  
Author(s):  
Danya J. Martell ◽  
Chandra P. Joshi ◽  
Ahmed Gaballa ◽  
Ace George Santiago ◽  
Tai-Yen Chen ◽  
...  

Metalloregulators respond to metal ions to regulate transcription of metal homeostasis genes. MerR-family metalloregulators act on σ70-dependent suboptimal promoters and operate via a unique DNA distortion mechanism in which both the apo and holo forms of the regulators bind tightly to their operator sequence, distorting DNA structure and leading to transcription repression or activation, respectively. It remains unclear how these metalloregulator−DNA interactions are coupled dynamically to RNA polymerase (RNAP) interactions with DNA for transcription regulation. Using single-molecule FRET, we study how the copper efflux regulator (CueR)—a Cu+-responsive MerR-family metalloregulator—modulates RNAP interactions with CueR’s cognate suboptimal promoter PcopA, and how RNAP affects CueR−PcopAinteractions. We find that RNAP can form two noninterconverting complexes at PcopAin the absence of nucleotides: a dead-end complex and an open complex, constituting a branched interaction pathway that is distinct from the linear pathway prevalent for transcription initiation at optimal promoters. Capitalizing on this branched pathway, CueR operates via a “biased sampling” instead of “dynamic equilibrium shifting” mechanism in regulating transcription initiation; it modulates RNAP’s binding–unbinding kinetics, without allowing interconversions between the dead-end and open complexes. Instead, the apo-repressor form reinforces the dominance of the dead-end complex to repress transcription, and the holo-activator form shifts the interactions toward the open complex to activate transcription. RNAP, in turn, locks CueR binding at PcopAinto its specific binding mode, likely helping amplify the differences between apo- and holo-CueR in imposing DNA structural changes. Therefore, RNAP and CueR work synergistically in regulating transcription.


2010 ◽  
Vol 45 (8) ◽  
pp. 1042-1050 ◽  
Author(s):  
Dan Liu ◽  
Raphaëlle Savoire ◽  
Eugène Vorobiev ◽  
Jean-Louis Lanoisellé
Keyword(s):  
Dead End ◽  

Evolution ◽  
2013 ◽  
Vol 67 (12) ◽  
pp. 3600-3616 ◽  
Author(s):  
Anastasia Gioti ◽  
Jason E. Stajich ◽  
Hanna Johannesson
Keyword(s):  
Dead End ◽  

1992 ◽  
pp. 318-325
Author(s):  
Stephen Gallagher ◽  
Russell Paterson ◽  
Jocelyn Etienne ◽  
Andre Larbot ◽  
Louis Cot

Sign in / Sign up

Export Citation Format

Share Document