Surface Charge and Ion Sorption Properties Influencing the Fouling and Flow Characteristics of Ceramic Membranes

1992 ◽  
pp. 318-325
Author(s):  
Stephen Gallagher ◽  
Russell Paterson ◽  
Jocelyn Etienne ◽  
Andre Larbot ◽  
Louis Cot
2014 ◽  
Vol 1665 ◽  
pp. 131-137 ◽  
Author(s):  
Natalia Mayordomo ◽  
Ursula Alonso ◽  
Tiziana Missana ◽  
Ana Benedicto ◽  
Miguel García-Gutiérrez

ABSTRACTCompacted bentonite barrier in radioactive waste repositories is expected to prevent radionuclide migration, due to its high sorption capability for many radionuclides. This study analyses whether the addition of Al2O3 nanoparticles (NPs) enhances the sorption properties of bentonite. The study was carried out with 109Cd, highly pollutant heavy metal and divalent fission product. Sorption experiments were conducted in NaClO4 at different ionic strengths (5·10-4 to 10-1 M) and pH (2 to 10), using mixtures of sodium homoionised bentonite and Al2O3 in different proportions.It has been probed that addition of Al2O3 NPs to bentonite enhances Cd sorption at pH higher than 6. The effect of Al2O3 NPs addition on the surface properties of bentonite colloids was also analyzed by measuring particle size and surface charge in all studied systems.


2008 ◽  
Vol 318 (1-2) ◽  
pp. 100-106 ◽  
Author(s):  
Qi Zhang ◽  
Wenheng Jing ◽  
Yiqun Fan ◽  
Nanping Xu

2016 ◽  
Vol 30 (3) ◽  
pp. 369-374 ◽  
Author(s):  
Kamil Skic ◽  
Patrycja Boguta ◽  
Zofia Sokołowska

Abstract Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g−1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=−0.736; α = 0.05) as well as ash content (R=−0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g−1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.


2017 ◽  
Vol 265 ◽  
pp. 518-523
Author(s):  
P.S. Gordienko ◽  
S.B. Yarusova ◽  
I.A. Shabalin ◽  
V.A. Dostovalov

Long–lived 134Cs and 137Cs isotopes with half-cycle of 2.06 and 30 years respectively refer to the most dangerous and wide-spread radionuclides in ecological facilities. The efficient way of removing cesium radioisotopes from the living environment is to bind them into the compounds insoluble in water. This paper presents the findings on the sorption properties of synthetic nanostructured calcium aluminosilicates (CAS) with AI:Si correlation equal to 2:2, 2:6, 2:10 and obtained in CaCI2—AICI3—КОН--SiO2—H2O multiple-component system. An isotherm investigation of cesium ion sorption produced from aqueous solution with Cs+1 from 0.2 till 6.0 mmol/L-1 concentration was carried out. Maximum sorption capacity of calcium aluminosilicates (CAS) as well as Langmuir constant was defined. The kinetics data was received and the activation energy of cation exchange in the process of sorption was estimated. The impact of 1% КCI + 6% NaCI saline background on the values of interfacial distribution coefficient (Kd) and recovery rate of cesium ions were determined.


Sign in / Sign up

Export Citation Format

Share Document