High pressure and very low temperature effects on the crystal structures of some iron(II) complexes

Author(s):  
Philippe Guionneau ◽  
Catherine Brigouleix ◽  
Yvette Barrans ◽  
Andrés E Goeta ◽  
Jean-François Létard ◽  
...  
1985 ◽  
Vol 119 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Bernard Galiois ◽  
Jacques Gaultier ◽  
Christian Hauw ◽  
Daniel Chasseau ◽  
Alain Meresse ◽  
...  

1999 ◽  
Vol 13 (29n31) ◽  
pp. 3623-3625 ◽  
Author(s):  
K. Amaya ◽  
K. Shimizu ◽  
M. I. Eremets

Techniques of producing ultra-high pressure at very low temperature and measuring method of electrical resistance and magnetization of samples confirmed in the used diamond anvil ceil (DAC) are shortly described. Experimental results on simple molecular systems such as iodine, sulfur, oxygen and organic iodanil are reviewed as typical example of pressure induced superconductivity.


2005 ◽  
Vol 97 (10) ◽  
pp. 10A922 ◽  
Author(s):  
L. V. Gasparov ◽  
D. Arenas ◽  
K.-Y. Choi ◽  
G. Güntherodt ◽  
H. Berger ◽  
...  

CrystEngComm ◽  
2019 ◽  
Vol 21 (30) ◽  
pp. 4501-4506
Author(s):  
S. A. Barnett ◽  
D. R. Allan

Polymorphic crystal structures have been determined for 2,2,2-trifluoroethanol by using the in situ crystallography techniques of high pressure and cryo-cooling.


2005 ◽  
Vol 5 (3) ◽  
pp. 1055-1071 ◽  
Author(s):  
Iain D. H. Oswald ◽  
David R. Allan ◽  
Graeme M. Day ◽  
W. D. Samuel Motherwell ◽  
Simon Parsons

HortScience ◽  
1990 ◽  
Vol 25 (11) ◽  
pp. 1422-1424 ◽  
Author(s):  
J.W. White ◽  
H. Chen ◽  
D.J. Beattie

Aquilegia ×hybrida `Bluebird' and `Robin', grown as greenhouse pot plants, initiated flower buds before cold exposure (4.5C) under supplemental high-pressure sodium lamps in mid-December, 5.5 months from sowing. Low temperature was the primary environmental factor that affected floral development in `Bluebird'. As the length of the cold exposure increased, the time between appearance of visible buds, anthesis, and petal shattering decreased, as did inflorescence number and total flower number per plant. Gibberellic acid (GA3) at 100 or 200 mg·liter-1 accelerated the appearance of visible buds during forcing in treatments without cold exposure. Soil drench applications of GA3 2 weeks before cold treatment accelerated floral development more than GA3 applied after cold exposure. Inflorescence number and total flower number per plant were reduced by 4 or 8 weeks but not by 2 weeks of exposure to cold. The developmental rate of “Robin', i.e., appearance of visible buds and anthesis, was quicker in plants with 18 to 20 leaves than in those with 12 to 14 leaves.


2005 ◽  
Vol 61 (4) ◽  
pp. 449-454 ◽  
Author(s):  
Pamela A. McGregor ◽  
David R. Allan ◽  
Simon Parsons ◽  
Colin R. Pulham

The low-temperature and high-pressure crystal structures of cyclobutanol (C4H7OH) have been determined using single-crystal X-ray diffraction techniques. At temperatures below 220 K, cyclobutanol crystallizes in the Aba2 space group (Z′ =  2) and its crystal structure is composed of pseudo-threefold hydrogen-bonded molecular catemers [assigned as C_2^2(4) in graph-set notation], which lie parallel to the crystallographic a axis. At a pressure of 1.3 GPa, the crystal symmetry changes to Pna21 (Z′  =  1) and the molecular catemers [expressed as C(2) in graph-set notation] adopt a pseudo-twofold arrangement. This structural behaviour is in agreement with our previous observations for phenol and its halogenated derivatives 2-chlorophenol and 4-fluorophenol, where pressure was found to favour a molecular packing more closely associated with small alkyl groups rather than that of relatively bulky alkyl groups. In addition, an examination of the molecular coordination environment in the low-temperature and high-pressure structures of cyclobutanol reveals that the change in structure on application of pressure appears to be driven by the molecules assuming a packing arrangement which more closely resembles that adopted in hard-sphere structures.


2014 ◽  
Vol 70 (a1) ◽  
pp. C752-C752 ◽  
Author(s):  
Serge Desgreniers ◽  
John Tse ◽  
Jianbao Zhao ◽  
Takahiro Matsuoka ◽  
Yasuo Ohishi

Following the development of high brilliance synchrotron x-ray sources, high density crystalline structures of elemental solids have been vastly studied at room temperature and elevated pressures. In the last decades, experimental and computational results have unveiled a vast diversity of crystalline structures adopted by many dense elements. Both complex modulated and exotic structures have been observed [1] and predicted [2]. In this communication, we report results of systematic searches for structural modifications taking place at very low temperature (T>10 K) and high pressure (P<50 GPa) in selected elementals solids. Results for cesium, calcium, barium, and selenium are presented. An extension of the known P-T phase diagram to lower temperature for cesium and selenium indicates that both elements do not adopt crystalline structures different that those already known and documented. We show that calcium at low temperature and high pressure, however, exhibits unusual and large dynamical fluctuations leading to a tetragonal distortion of the simple cubic structure known to exist at room temperature and about 30 GPa. The large amplitude fluxional behaviour leads to the appearance of a new phase, nested at T<30K between 40 and 45 GPa. Finally, barium when compressed at low temperature, transforms into a crystalline structure unobserved at high pressure and room temperature. It is found that, below 140K and in the pressure range of 13 to 35 GPa, barium does not adopt the phase IV structure, i.e., the modulated incommensurate cell, but undergoes a transition from phase II (P63/mmc) to an orthorhombic (Pmna) cell. This new structure corresponds to phase VI. On the basis of an x-ray diffraction study along quasi-isobaric and isothermal paths, we conclude that Ba-VI is most likely metastable. Our results suggest the need to scrutiny other dense elements at very low temperature. Under those conditions, unusual structural modifications are ought to be observed.


Sign in / Sign up

Export Citation Format

Share Document