scholarly journals Gibberellin, Light, and Low-temperature Effects on Flowering of Aquilegia

HortScience ◽  
1990 ◽  
Vol 25 (11) ◽  
pp. 1422-1424 ◽  
Author(s):  
J.W. White ◽  
H. Chen ◽  
D.J. Beattie

Aquilegia ×hybrida `Bluebird' and `Robin', grown as greenhouse pot plants, initiated flower buds before cold exposure (4.5C) under supplemental high-pressure sodium lamps in mid-December, 5.5 months from sowing. Low temperature was the primary environmental factor that affected floral development in `Bluebird'. As the length of the cold exposure increased, the time between appearance of visible buds, anthesis, and petal shattering decreased, as did inflorescence number and total flower number per plant. Gibberellic acid (GA3) at 100 or 200 mg·liter-1 accelerated the appearance of visible buds during forcing in treatments without cold exposure. Soil drench applications of GA3 2 weeks before cold treatment accelerated floral development more than GA3 applied after cold exposure. Inflorescence number and total flower number per plant were reduced by 4 or 8 weeks but not by 2 weeks of exposure to cold. The developmental rate of “Robin', i.e., appearance of visible buds and anthesis, was quicker in plants with 18 to 20 leaves than in those with 12 to 14 leaves.

2005 ◽  
Vol 97 (10) ◽  
pp. 10A922 ◽  
Author(s):  
L. V. Gasparov ◽  
D. Arenas ◽  
K.-Y. Choi ◽  
G. Güntherodt ◽  
H. Berger ◽  
...  

Author(s):  
Philippe Guionneau ◽  
Catherine Brigouleix ◽  
Yvette Barrans ◽  
Andrés E Goeta ◽  
Jean-François Létard ◽  
...  

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 992B-992
Author(s):  
John Erwin ◽  
Esther Gesick ◽  
Ben Dill ◽  
Charles Rohwer

A study was conducted to determine if photoperiod, irradiance, and/or a cool temperatures impacted flowering of selected species in five cactus genera. Gymnocalycium, Rebutia, Lobivia, and Sulcorebutia plants were grown for 4 months under natural daylight conditions (August–November) in a greenhouse maintained at 26 ± 2 °C. Plants were then placed in either of two greenhouses: 1) a greenhouse maintained at 22 °C day/18 ± 1 °C night temperature with an 8-h daylength (SD) or natural daylight plus night interruption lighting (NI; 2200–0200 HR), or 2) a greenhouse maintained at 5 ± 2 °C under natural daylight conditions (8–10 h). After 12 weeks at 5 °C, plants were moved to the SD and NI lighting treatments in the before mentioned greenhouse and additional lighting treatment [natural daylight plus supplemental high-pressure sodium lighting (85–95 μmol·m-2·s-1; 0800–0200 HR)]. In all cases, plants were moved out of lighting treatments after 6 weeks and were then grown under natural daylight conditions in a greenhouse maintained at constant 22 ± 1 °C. Data were collected on the approximate date growth commenced, the date when each flower opened (five flowers only), flower number per plant, and individual flower longevity (five flowers only). Species were classified into photoperiodic and irradiance response groups where appropriate and whether species exhibited a vernalization requirement was reported. Lastly, whether dormancy occurred and what conditions overcame that dormancy was reported.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1065D-1066
Author(s):  
John Erwin ◽  
Esther Gesick ◽  
Ben Dill ◽  
Charles Rohwer

The impact of photoperiod, irradiance, and/or cool temperature on flowering and/or dormancy in Mamillopsis senilis and Echinopsis and Trichocereus hybrids was studied. Two- to 3-year-old plants (180 plants of each type) were grown for 4 months under natural daylight (DL) conditions (August–November) in a greenhouse maintained at 26 ± 2 °C. Plants were then placed in either of two greenhouses: a cool temperature house (5 ± 2 °C; DL), or a lighting treatment house (22/18 ± 1 °C day/night temperature, respectively). The lighting treatment house had eight light environments: 1) short day (SD; 8 h; 0800–1600 hr); 2) SD+25–35 μmol·m-2·s-1; 3) SD+45–50 μmol·m-2·s-1; 4) SD+85–95 μmol·m-2·s-1; 5) DL plus night interruption lighting (NI; 2200–0200 hr; 2 μmol·m-2·s-1 from incandescent lamps); 6) DL+25–35 μmol·m-2·s-1 (lighted from 0800–0200 hr); 7) DL+45–50 μmol·m-2·s-1; and 8) DL+85–95 μmol·m-2·s-1. Supplemental lighting was provided using high-pressure sodium lamps. Plants were placed in the cool temperature house for 0, 4, 8 or 12 weeks before being placed under lighting treatments. All plants received lighting treatments for 6 weeks and were then placed in a finishing greenhouse (DL; 22 ± 2 °C). Data were collected on approximate day when growth resumed, the date when each flower opened (five only), total flower number per plant, and how long each flower stayed open (five only). Whether species exhibited dormancy and what conditions, if any, broke that dormancy was identified. Species were also classified into photoperiodic, irradiance, and vernalization response groups with respect to flowering.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 992C-992
Author(s):  
John Erwin ◽  
Esther Gesick ◽  
Ben Dill ◽  
Charles Rohwer

Photoperiod, irradiance, and/or a cool temperature effects on Chamaelobivia hybrid `Rose Quartz' flowering was studied. Two- to 3-year-old plants were grown for 4 months under natural daylight (DL; August–November) in a greenhouse maintained at 26 ± 2 °C. Plants were then placed in either of two greenhouses: a cool temperature house (5 ± 2 °C; natural daylight), or a lighting treatment house (22 °C day/18 ± 1 °C night temperature, respectively). The lighting treatment house had eight light environments: 1) short day (SD; 8 h; 0800–1600 HR); 2) SD+25–35 μmol·m-2·s-1; 3) SD+45-50 μmol·m-2·s-1; 4) SD+85-95 μmol·m-2·s-1; 5) DL plus night interruption lighting (NI; 2200–0200 HR; 2 μmol·m-2·s-1 from incandescent lamps); 6) DL+25-35 μmol·m-2·s-1 (lighted from 0800–0200 HR); 7) DL+45-50 μmol·m-2·s-1; and 8) DL+85-95 μmol·m-2·s-1. Supplemental lighting was provided using high-pressure sodium lamps. Plants were placed in the cool temperature environment for 0, 4, 8, or 12 weeks before being placed under lighting treatments. All plants received a 6-week lighting treatment and were then placed in the finishing greenhouse (22 ± 2 °C). Data were collected on the date when each flower opened (five only), the flower number per plant, and flower longevity (five only). Vernalization interacted with photoperiod to affect flowering. Unvernalized plants exhibited an obligate long-day requirement for flowering. Vernalized plants exhibited a facultative long-day requirement for flowering. The impact of vernalization, photoperiod, and irradiance on flower number, time to flower, and longevity will also be discussed.


2021 ◽  
pp. 160309
Author(s):  
M. Osorio-García ◽  
K. Suárez-Alcántara ◽  
Y. Todaka ◽  
A. Tejeda-Ochoa ◽  
M. Herrera Ramírez ◽  
...  

2021 ◽  
Vol 285 ◽  
pp. 110164
Author(s):  
Ya-Zhuo Yang ◽  
Tong Li ◽  
Rui-Min Teng ◽  
Miao-Hua Han ◽  
Jing Zhuang

2020 ◽  
pp. 146808742096933
Author(s):  
Xiangyu Meng ◽  
Sicheng Liu ◽  
Jingchen Cui ◽  
Jiangping Tian ◽  
Wuqiang Long ◽  
...  

A novel method called high-pressure air (HPA) jet controlled compression ignition (JCCI) based on the compound thermodynamic cycle was investigated in this work. The combustion process of premixed mixture can be controlled flexibly by the high-pressure air jet compression, and it characterizes the intensified low-temperature reaction and two-stage high-temperature reaction. The three-dimensional (3D) computational fluid dynamics (CFD) numerical simulation was employed to study the emission formation process and mechanism, and the effects of high-pressure air jet temperature and duration on emissions were also investigated. The simulation results showed that the NOx formation is mainly affected by the first-stage high-temperature reaction due to the higher reaction temperature. Overall, this combustion mode can obtain ultra-low NOx emission. The second-stage high-temperature reaction plays an important role in the CO and THC formation caused by the mixing effect of the high-pressure air and original in-cylinder mixture. The increasing air jet temperature leads to a larger high-temperature in-cylinder region and more fuel in the first-stage reaction, and therefore resulting in higher NOx emission. However, the increasing air jet temperature can significantly reduce the CO and THC emissions. For the air jet duration comparisons, both too short and too long air jet durations could induce higher NOx emission. A higher air jet duration would result in higher CO emission due to the more high-pressure air jet with relatively low temperature.


Sign in / Sign up

Export Citation Format

Share Document