Hip angle induced modulation of H reflex amplitude, latency and duration in spinal cord injured humans

2002 ◽  
Vol 113 (11) ◽  
pp. 1698-1708 ◽  
Author(s):  
Maria Knikou ◽  
William Zev Rymer
Neurosurgery ◽  
1984 ◽  
Vol 14 (5) ◽  
pp. 562-566 ◽  
Author(s):  
Maureen Raffensperger ◽  
Donald H. York

Abstract This study examined the effects of ice water caloric stimulation on H-reflex amplitude in normal subjects and three complete spinal cord-injured patients. H-reflexes were obtained by stimulating the tibial nerve at the popliteal fossa and recording the H-response from the gastrocnemius muscle. All normal subjects who experienced nystagmus or vertigo demonstrated significant augmentation in H-reflex amplitude with ice water irrigation of the ear canal. In the three spinal cord-injured patients, there was no significant change of H-reflex with the ice water stimulus. The results suggest that descending tracts in the anterior spinal cord must be functional to demonstrate caloric augmentation of H-reflexes. In patients with spinal cord injury, it may be possible to predict the recovery of motor function using this test together with other clinical signs of neurological function.


2018 ◽  
Vol 120 (6) ◽  
pp. 3172-3186 ◽  
Author(s):  
R. Zhou ◽  
B. Parhizi ◽  
J. Assh ◽  
L. Alvarado ◽  
R. Ogilvie ◽  
...  

Spinal networks in the cervical and lumbar cord are actively coupled during locomotion to coordinate arm and leg activity. The goals of this project were to investigate the intersegmental cervicolumbar connectivity during cycling after incomplete spinal cord injury (iSCI) and to assess the effect of rehabilitation training on improving reflex modulation mediated by cervicolumbar pathways. Two studies were conducted. In the first, 22 neurologically intact (NI) people and 10 people with chronic iSCI were recruited. The change in H-reflex amplitude in flexor carpi radialis (FCR) during leg cycling and H-reflex amplitude in soleus (SOL) during arm cycling were investigated. In the second study, two groups of participants with chronic iSCI underwent 12 wk of cycling training: one performed combined arm and leg cycling (A&L) and the other legs only cycling (Leg). The effect of training paradigm on the amplitude of the SOL H-reflex was assessed. Significant reduction in the amplitude of both FCR and SOL H-reflexes during dynamic cycling of the opposite limbs was found in NI participants but not in participants with iSCI. Nonetheless, there was a significant reduction in the SOL H-reflex during dynamic arm cycling in iSCI participants after training. Substantial improvements in SOL H-reflex properties were found in the A&L group after training. The results demonstrate that cervicolumbar modulation during rhythmic movements is disrupted in people with chronic iSCI; however, this modulation is restored after cycling training. Furthermore, involvement of the arms simultaneously with the legs during training may better regulate the leg spinal reflexes.NEW & NOTEWORTHY This work systematically demonstrates the disruptive effect of incomplete spinal cord injury on cervicolumbar coupling during rhythmic locomotor movements. It also shows that the impaired cervicolumbar coupling could be significantly restored after cycling training. Actively engaging the arms in rehabilitation paradigms for the improvement of walking substantially regulates the excitability of the lumbar spinal networks. The resulting regulation may be better than that obtained by interventions that focus on training of the legs only.


Author(s):  
Elmer G. Pinzon ◽  
Tien-Yow Chuang ◽  
Faye Y. Chiou-Tan ◽  
Stephen M. Tuel

1999 ◽  
Vol 16 (2) ◽  
pp. 175-186 ◽  
Author(s):  
XIANG YANG CHEN ◽  
JONATHAN R. WOLPAW ◽  
LYN B. JAKEMAN ◽  
BRADFORD T. STOKES

1996 ◽  
Vol 76 (5) ◽  
pp. 3589-3592 ◽  
Author(s):  
J. E. Misiaszek ◽  
J. K. Barclay ◽  
J. D. Brooke

1. H reflexes were elicited in the second interosseous muscle of the hindpaw of the anesthetized dog during passive rotation of the shank about the ipsilateral or contralateral knee. Reflexes sampled at four points in the cycle of movement were compared with stationary controls. For both the ipsilateral and contralateral limb manipulations, reflexes were significantly reduced (P < 0.05) across the cycle of movement. Position-related modulation of the reflex amplitude was not detected (P > 0.05) in either instance. 2. The experiments were then repeated after the spinal transection of each animal at the level of T13. Passive rotation about either the ipsilateral or contralateral knee significantly attenuated (P < 0.05) the H reflex across a cycle of movement in the spinal dog. There was little difference in the amount of inhibition produced by the movement between the intact and spinal animals. On average, the reflex was attenuated 29 +/- 2.4% (mean +/- SE) in the intact animals and 32 +/- 2.1% in the spinal animals. 3. It is concluded that passive rotation about the knee of either leg leads to suppression of the H reflex of the second interosseous muscle both in the ipsilateral, moving leg and the contralateral, stationary one. This reflex suppression occurs across the cycle of movement. The mediating circuitry lies within the spinal cord, caudal to T13.


1989 ◽  
Vol 61 (3) ◽  
pp. 563-572 ◽  
Author(s):  
J. R. Wolpaw ◽  
C. L. Lee

1. Study of memory traces in higher animals requires experimental models possessing well-localized and technically accessible memory traces--plasticity responsible for behavioral change, not dependent on control from elsewhere, and open to detailed investigation. Our purpose has been to develop such a model based on the wholly spinal, largely monosynaptic path of the spinal stretch reflex. Previous studies described operant conditioning of this reflex and of its electrical analog, the H-reflex. In this study, we sought to determine whether conditioning causes changes in the spinal cord that affect the reflex and are not dependent on continued supraspinal influence, and thus qualify as memory traces. 2. Sixteen monkeys underwent chronic conditioning of the triceps surae H-reflex. Eight were rewarded for increasing H-reflex amplitude (HR increases mode), and eight were rewarded for decreasing it (HR decreases mode). In each animal, the other leg was an internal control. Over several months of conditioning, H-reflex amplitude in the conditioned leg rose in HR increases animals and fell in HR decreases animals. H-reflex amplitude in the control leg changed little. 3. After HR increases or HR decreases conditioning, each animal was deeply anesthetized and surgically prepared. The reflex response to supramaximal dorsal root stimulation was measured from the triceps surae nerve as percent of response to supramaximal ventral root stimulation, which was the maximum possible response. Data from both legs were collected before and for up to 3 days after thoracic (T9-10) cord transection. The animal remained deeply anesthetized throughout and was killed by overdose. 4. The reflex asymmetries produced by conditioning were still present several days after transection removed supraspinal influence: reflexes of HR increases animals were significantly larger in HR increases legs than in control legs and reflexes of HR decreases animals were significantly smaller in HR decreases legs than in control legs. 5. Reflex amplitude was much greater in the control legs of anesthetized HR decreases animals than in the control legs of anesthetized HR increases animals. 6. Chronic conditioning had at least two effects on the spinal cord. The first effect, task-appropriate reflex asymmetry, was evident both in the awake behaving animal and in the anesthetized transected animal. The second effect, larger control leg reflexes in HR decreases than in HR increases animals, was evident only in the anesthetized animal. By removing supraspinal control, anesthesia and transection revealed a previously hidden effect of conditioning.(ABSTRACT TRUNCATED AT 400 WORDS)


2014 ◽  
Vol 112 (10) ◽  
pp. 2374-2381 ◽  
Author(s):  
Yi Chen ◽  
Lu Chen ◽  
Yu Wang ◽  
Jonathan R. Wolpaw ◽  
Xiang Yang Chen

Operant conditioning of a spinal cord reflex can improve locomotion in rats and humans with incomplete spinal cord injury. This study examined the persistence of its beneficial effects. In rats in which a right lateral column contusion injury had produced asymmetric locomotion, up-conditioning of the right soleus H-reflex eliminated the asymmetry while down-conditioning had no effect. After the 50-day conditioning period ended, the H-reflex was monitored for 100 [±9 (SD)] (range 79–108) more days and locomotion was then reevaluated. After conditioning ended in up-conditioned rats, the H-reflex continued to increase, and locomotion continued to improve. In down-conditioned rats, the H-reflex decrease gradually disappeared after conditioning ended, and locomotion at the end of data collection remained as impaired as it had been before and immediately after down-conditioning. The persistence (and further progression) of H-reflex increase but not H-reflex decrease in these spinal cord-injured rats is consistent with the fact that up-conditioning improved their locomotion while down-conditioning did not. That is, even after up-conditioning ended, the up-conditioned H-reflex pathway remained adaptive because it improved locomotion. The persistence and further enhancement of the locomotor improvement indicates that spinal reflex conditioning protocols might supplement current therapies and enhance neurorehabilitation. They may be especially useful when significant spinal cord regeneration becomes possible and precise methods for retraining the regenerated spinal cord are needed.


Sign in / Sign up

Export Citation Format

Share Document