Transport properties and ac susceptibility of (Bi1.6Pb0.4)Sr2Ca2Cu1−xCox)3Oy superconductors

2001 ◽  
Vol 3 (7) ◽  
pp. 763-767 ◽  
Author(s):  
G Ilonca ◽  
A.V Pop ◽  
Tzuen-Rong Yang ◽  
T Jurcut ◽  
C Lung ◽  
...  
2019 ◽  
Vol 7 (4.14) ◽  
pp. 478
Author(s):  
Norazila Ibrahim ◽  
Nor Asmira Amaran ◽  
Zakiah Mohamed ◽  
Ahmad Kamal Yahya

Magnetic and electronic transport properties of Bi0.3-xLaxPr0.3Ca0.4Mn0.1Cr0.9O3 (0≤x≤0.2) manganites have been investigated by measurements of AC-susceptibility, resistivity and magnetoresistance. The samples were prepared using conventional solid-state synthesis method. Magnetic susceptibility versus temperature measurements showed all samples exhibit ferromagnetic to paramagnetic transition with Curie temperature, Tc enhanced from 111 K (x=0) to 174 K (x=0.2). Electrical resistivity measurements of the samples in zero field showed increase of metal-insulator (MI) transition temperature from 58 K(x=0) to 88 K(x=0.2). The increase in both Tc and TMI indicates enhancement of double exchange (DE) interaction involving Mn3+ and Mn4+ ions as a result of weakening of the hybridization effect between Bi3+ 6s2 lone pair with O orbital due to La3+ substitution.  La substitution in the Bi-based compound is suggested reduce MnO6 octahedral distortion hence increasing delocalization of charge carriers. The observed variation in MR behavior due to La substitution indicates the substitution influence the MR mechanism of extrinsic and intrinsic behavior in Bi0.3-xLaxPr0.3Ca0.4Mn0.1Cr0.9O3 . 


2004 ◽  
Vol 269 (2) ◽  
pp. 231-237 ◽  
Author(s):  
M. Očko ◽  
I. Živkovic ◽  
M. Prester ◽  
Dj. Drobac ◽  
D. Ariosa ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 835
Author(s):  
Lik Nguong Lau ◽  
Kean Pah Lim ◽  
See Yee Chok ◽  
Amirah Natasha Ishak ◽  
Xiao Tong Hon ◽  
...  

Incorporation of the secondary oxide phase into the manganite composite capable of enhancing low-field magnetoresistance (LFMR) for viability in high-performance spintronic applications. Polycrystalline La0.67Ca0.33MnO3 (LCMO) was prepared via the sol–gel route in this study. The structural, microstructural, magnetic, electrical, and magneto-transport properties of (1−x) LCMO: x NiO, x = 0.00, 0.05, 0.10, 0.15 and 0.20 were investigated in detail. The X-ray diffraction (XRD) patterns showed the coexistence of LCMO and NiO in the composites. The microstructural analysis indicated the amount of NiO nanoparticles segregated at the grain boundaries or on the surface of LCMO grains increased with the increasing secondary phase content. LCMO and NiO still retained their individual magnetic phase as observed from AC susceptibility (ACS) measurement. This further confirmed that there is no interfacial diffusion reaction between these two compounds. The NiO nanoparticle acted as a barrier to charge transport and caused an increase in resistivity for composite samples. The residual resistivity due to the grain/domain boundary is responsible for the scattering mechanism in the metallic region as suggested by the theoretical model fitting, ρ(T)=ρ0+ρ2T2+ρ4.5T4.5. The magnetoresistance values of LCMO and its composites were found to increase monotonically with the decrease in temperature. Hence, the LFMR was observed. Nonetheless, the slight reduction of LFMR in composites was attributed to the thick boundary layer created by NiO and impaired the spin polarised tunnelling process.


1988 ◽  
Vol 102 ◽  
pp. 165-174
Author(s):  
C. de Michelis

AbstractImpurities being an important concern in tokamaks, spectroscopy plays a key role in their understanding. Techniques for the evaluation of concentrations, power losses and transport properties are surveyed, and a few developments are outlined.


Author(s):  
Alain Claverie ◽  
Zuzanna Liliental-Weber

GaAs layers grown by MBE at low temperatures (in the 200°C range, LT-GaAs) have been reported to have very interesting electronic and transport properties. Previous studies have shown that, before annealing, the crystalline quality of the layers is related to the growth temperature. Lowering the temperature or increasing the layer thickness generally results in some columnar polycrystalline growth. For the best “temperature-thickness” combinations, the layers may be very As rich (up to 1.25%) resulting in an up to 0.15% increase of the lattice parameter, consistent with the excess As. Only after annealing are the technologically important semi-insulating properties of these layers observed. When annealed in As atmosphere at about 600°C a decrease of the lattice parameter to the substrate value is observed. TEM studies show formation of precipitates which are supposed to be As related since the average As concentration remains almost unchanged upon annealing.


1993 ◽  
Vol 3 (12) ◽  
pp. 2173-2188
Author(s):  
N. G. Chechenin ◽  
A. V. Chernysh ◽  
V. V. Korneev ◽  
E. V. Monakhov ◽  
B. V. Seleznev

1989 ◽  
Vol 50 (21) ◽  
pp. 3233-3242 ◽  
Author(s):  
M. Očko ◽  
E. Babić

1980 ◽  
Vol 41 (10) ◽  
pp. 1173-1181 ◽  
Author(s):  
M.-L. Theye ◽  
A. Gheorghiu ◽  
T. Rappeneau ◽  
A. Lewis

Sign in / Sign up

Export Citation Format

Share Document