Identification of LPV vehicle models for steering control involving asymmetric front wheel braking

2004 ◽  
Vol 37 (13) ◽  
pp. 519-524
Author(s):  
G. Rödönyi ◽  
J. Bokor
Keyword(s):  
Author(s):  
Hui Jing ◽  
Rongrong Wang ◽  
Cong Li ◽  
Jinxiang Wang

This article investigates the differential steering-based schema to control the lateral and rollover motions of the in-wheel motor-driven electric vehicles. Generated from the different torque of the front two wheels, the differential steering control schema will be activated to function the driver’s request when the regular steering system is in failure, thus avoiding dangerous consequences for in-wheel motor electric vehicles. On the contrary, when the vehicle is approaching rollover, the torque difference between the front two wheels will be decreased rapidly, resulting in failure of differential steering. Then, the vehicle rollover characteristic is also considered in the control system to enhance the efficiency of the differential steering. In addition, to handle the low cost measurement problem of the reference of front wheel steering angle and the lateral velocity, an [Formula: see text] observer-based control schema is presented to regulate the vehicle stability and handling performance, simultaneously. Finally, the simulation is performed based on the CarSim–Simulink platform, and the results validate the effectiveness of the proposed control schema.


Author(s):  
Yansong Peng ◽  
Fengchen Wang ◽  
Saikrishna Gurumoorthy ◽  
Yan Chen ◽  
Mutian Xin

Abstract In this paper, a vision-based path-tracking control strategy using four-wheel steering (4WS) is experimentally investigated via an automated ground vehicle (AGV). A low-cost monocular camera is used to continuously perceive the upcoming lane boundaries via capturing the preview road image frames. Based on the applied image processing algorithms, the vehicle lateral offset error with respect to the road center line and the heading angle error with respect to the road curvature are calculated in real time for the control purpose. The 4WS path-tracking controller is designed to minimize the two path-tracking errors of the AGV. The AGV with the 4WS system is utilized to perform the experimental tests on road to validate the path-tracking control design. For comparison, the road test is also conducted for the path-tracking control with only the front wheel steering. The experimental results show that the proposed 4WS is able to achieve better path-tracking performance.


Author(s):  
Shih-Ken Chen ◽  
William C. Lin ◽  
Yuen-Kwok Steve Chin ◽  
Xiaodi Kang

This paper presents an analysis and comparison of a vehicle with active front steering and rear-wheel steering. Based on linear analysis of base vehicle characteristics under varying speed and road surfaces, desirable vehicle response characteristics are presented and a set of performance matrices for active steering systems is formulated. Using pole-placement approach, controllability issues under active front wheel steering and rear- wheel steering controls are discussed. A frequency response optimization approach is then used to design the closed-loop controllers.


2003 ◽  
Vol 69 (688) ◽  
pp. 3191-3197 ◽  
Author(s):  
Yutaka KAMATA ◽  
Hidekazu NISHIMURA ◽  
Hidekuni IIDA

2021 ◽  
Author(s):  
Sheng Zheng ◽  
Yiming Cheng ◽  
Liangyao Yu

Abstract The development of active steering control technology not only provides key actuators for intelligent vehicle motion control, but also expands vehicle stability and safety. This paper studies the potential control ability of the front-wheel steering control to the vehicle plane dynamics, and the controllable area boundary is designed on the phase plane of side slip angle and yaw rate. Previous studies have defined a dynamics stable area on the vehicle states phase plane, in which the vehicle state can autonomously return to a stable equilibrium point. The area outside the stable area are divided into the controllable area and the uncontrollable area in this paper. In the controllable area, the front-wheel steering control has the ability to pull the vehicle states back towards the stable area. Considering actuator constraints and model errors, based on the principle of safety design, a band-shaped critical area is designed to separate the controllable area from the uncontrollable area, and the linear mathematical model of the controllable area boundary is designed. In order to verify the rationality of the controllable area definition, nonlinear model predictive controller is designed to control the vehicle outside the dynamics stable area. The controller uses the high-fidelity nonlinear vehicle model and the magic formula tire model as the state equation constraints, and the practical steering actuator constraints are used as the control input constraints, and the nonlinear numerical optimization solver is used to solve the optimal steering input sequence. The phase plane analysis of the controlled vehicle verifies the rationality of the controllable area defined in this paper.


1998 ◽  
Vol 6 (3) ◽  
pp. 412-420 ◽  
Author(s):  
E. Ono ◽  
S. Hosoe ◽  
Hoang D. Tuan ◽  
S. Doi

Sign in / Sign up

Export Citation Format

Share Document