scholarly journals Variable Speed Missile Guidance Law Against a Maneuvering Target

2004 ◽  
Vol 37 (6) ◽  
pp. 599-604 ◽  
Author(s):  
Naoto Dohi ◽  
Yoriaki Baba ◽  
Hiroyuki Takano
Author(s):  
Jun-Yong Lee ◽  
Hyeong-Guen Kim ◽  
H Jin Kim

This article proposes an impact-time-control guidance law that can keep a non-maneuvering moving target in the seeker’s field of view (FOV). For a moving target, the missile calculates a predicted intercept point (PIP), designates the PIP as a new virtual stationary target, and flies to the PIP at the desired impact time. The main contribution of the article is that the guidance law is designed to always lock onto the moving target by adjusting the guidance gain. The guidance law for the purpose is based on the backstepping control technique and designed to regulate the defined impact time error. In this procedure, the desired look angle, which is a virtual control, is designed not to violate the FOV limit, and the actual look angle of the missile is kept within the FOV by tracking the desired look angle. To validate the performance of the guidance law, numerical simulation is conducted with different impact times. The result shows that the proposed guidance law intercepts the moving target at the desired impact time maintaining the target lock-on condition.


Author(s):  
Feng Tyan ◽  
Jeng Fu Shen

Author(s):  
Ke-Bo Li ◽  
Wen-Shan Su ◽  
Lei Chen

The interception of high-speed target with an arbitrary maneuvering acceleration causes serious troubles to the guidance and control system design of airborne missile. A novel guidance law based on the classical differential geometry curve theory was proposed not long ago. Although it is believed and numerically demonstrated that this differential geometric guidance law (DGGL) is superior to the classical pure proportional navigation (PPN) in intercepting high-speed targets, its performance has not been thoroughly analyzed. In this paper, using the Lyapunov-like approach, the performance of DGGL against the high-speed target with an arbitrary but upper-bounded maneuvering acceleration is well studied. The upper bounds of the LOS rate and commanded acceleration of DGGL are obtained, and conditions that guarantee the capture of this type of maneuvering target are also presented. The nonlinear relative dynamics between the missile and target is taken into full account. Finally, the proposed theoretical findings are demonstrated by numerical simulation examples.


2013 ◽  
Vol 60 (12) ◽  
pp. 5882-5891 ◽  
Author(s):  
Zheng Zhu ◽  
Dong Xu ◽  
Jingmeng Liu ◽  
Yuanqing Xia

Sign in / Sign up

Export Citation Format

Share Document