impact time
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 85)

H-INDEX

23
(FIVE YEARS 7)

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2186
Author(s):  
Shengxian Yi ◽  
Zhongjiong Yang ◽  
Liqiang Zhou ◽  
Gaofeng Zhang

The nickel powder brush plate is a core component of the direct contact between the cleaning machine and cathode plate of an electrolyzer, and its movement in the electrolytic cell will affect the energy consumption of the electrolyzer. In order to optimize the structure of the brush plate, a cleaning trolley brush plate was taken as the research object, a mathematical model of its electrolyzer was established, and the reliability was subsequently verified. The influence of the structural and operating parameters of the brush plate on the energy consumption of the electrolytic cell was studied. The research results show that additional energy consumption is the lowest in the process of cleaning a return grooved brush plate. Brush plates with a large slotting area have less impact on the energy consumption of the electrolyzer. The slotting method, where the anodes are arranged directly opposite each other and relatively concentrated, can be adapted to render a more uniform current density distribution on the anode surface, with lower energy consumption and less variation in voltage and current. With the increasing number of slots from one to three, the current density distribution on the anode surface became more uniform, with a reduction in the variation range of the slot voltage and current in the branch where the cathode plate was cleaned and a decreased energy consumption. With the linear increase in brush cleaning speed, the impact time of the brush plate on the electrolyzer decreased nonlinearly, and as the extent of this decrease gradually diminished, the additional energy consumption showed the same trend. These research results were then used as a basis for optimizing the existing commonly used empirical C-brush plates. Following optimization, the current density distribution on the anode surface was found to be more uniform, the variation amplitude of tank voltage was reduced by 34%, the current drop amplitude of the branch circuit where the brushed cathode plate was located was reduced by 39%, the impact time on the current field of the electrolytic tank was reduced by 40%, and the additional energy consumption was reduced by 50.9%. These results can be served as a reference for further theoretical research related to brush plates.


2021 ◽  
Vol 5 (5) ◽  
pp. 1573-1578
Author(s):  
Abhinav Sinha ◽  
Shashi Ranjan Kumar ◽  
Dwaipayan Mukherjee
Keyword(s):  

2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Agus Gumilar ◽  
Jajat Darajat ◽  
Amung Ma’mun ◽  
N Nuryadi ◽  
Burhan Hambali ◽  
...  

This research aimed to analyze the batting skill performance on softball using an application of technology. The assessment results can help the coaching process by providing empirical data and become material for evaluation and recommendations for trainers and coaches in the following coaching process. The method used in this research was a descriptive analysis survey. The samples were 21 West Java female softball athletes who were doing training concentration. The measurement of the speed impact parameter was obtained (79.94 ± 7.73) to achieve the 25.06% target achievement. The results of the parameter test on the target obtained a p-value (0.0001) 0.05. This means that the percentage of the results on this parameter had not significantly met the target. The impact time parameter obtained an average percentage of the results of (83.06 ± 8.47). The percentage of the target was 16.94%. The Tukey statistical follow-up test results showed that the impact time parameter had not shown a significant achievement with a p-value (0.0001) 0.05. It concludes that the batting performance of West Java female softball athletes had not reached the stated target. Therefore, it is recommended that the training increase based on the portion and exercise items according to the predetermined parameters.


2021 ◽  
pp. 107187
Author(s):  
Zichao Liu ◽  
Jiang Wang ◽  
Shaoming He ◽  
Hyo-Sang Shin ◽  
Antonios Tsourdos
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shuangxi Liu ◽  
Binbin Yan ◽  
Tong Zhang ◽  
Pei Dai ◽  
Jie Yan

Impact time control guidance (ITCG) is an important approach to achieve saturation attack on targets. With the increasing complexity of warfare requirements for missiles, an ITCG with field-of-view (FOV) constrained for antiship missiles is proposed based on equivalent sliding mode control. Firstly, in view of the accuracy of the calculation of remaining impact time for guidance law, the large initial lead angle is taken into consideration in the estimation of remaining flying time in which there is no need for the assumption of small angle approximation. Besides, for the sake of promoting the practical application value of the proposed guidance law, FOV is considered so that it can satisfy the actual working performance of the seeker. Then, combined with the concept of predicted interception point (PIP), the proposed guidance law is applied to attack a moving target. Numerical analysis is carried out for different initial lead angles, various impact time, different methods of estimating remaining flying time, and cooperative attack conditions. Compared with proportion navigation guidance (PNG), the feasibility and effectiveness of the guidance law are verified. Simulation results demonstrate that the proposed guidance law can guarantee the constraints of both impact time and FOV effectively.


Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 100
Author(s):  
Zhanyuan Jiang ◽  
Jianquan Ge ◽  
Qiangqiang Xu ◽  
Tao Yang

Aiming at the problem that multiple Unmanned Aerial Vehicles (UAVs) attack the stationary target cooperatively under time-varying velocity, the cooperative guidance law with finite time convergence on two-dimensional plan and the three-dimensional cooperative guidance laws with impact time constraint are designed separately in this paper. Firstly, based on the relative motion equation between UAV and target on two-dimensional plane, the time cooperative guidance model of multiple UAVs is established. Then based on the consistency theory and graph theory, a distributed time cooperative guidance law is designed, which can ensure that the impact time of all UAVs can be quickly consistent in a limited time. Next, the cooperative guidance problem is expanded from two-dimensional plane to three-dimensional space, the motion model between UAV and target in three-dimensional space is established and the expression of time-to-go estimation under time-varying velocity is derived. Finally, according to whether there is the communication among UAVs under the condition of time-varying velocity, a multiple UAVs three-dimensional cooperative guidance law based on desired impact time and a multiple UAVs three-dimensional cooperative guidance law based on coordination variables are designed, respectively. The simulation results show that the cooperative guidance law with finite time convergence on two-dimensional plan and the three-dimensional cooperative guidance law with impact time constraint proposed in this paper are effective, which can both realize the saturation attack under the time-varying velocity.


Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 251
Author(s):  
Shuai Ma ◽  
Xugang Wang ◽  
Zhongyuan Wang

The problem of impact time control guidance with field-of-view constraint is addressed based on time-varying sliding mode control. The kinematic conditions that satisfy the impact time control with field-of-view constraint are defined, and then a novel time-varying sliding surface is constructed to achieve the defined conditions. The sliding surface contains two unknown coefficients: one is tuned to achieve the global sliding surface to satisfy the impact time constraint and zero miss distance, and the other is tuned to guarantee the field-of-view constraint. The guidance law is designed to ensure the realization of the global sliding mode. On this basis, the guidance law is modified to a closed-loop structure, and the maximum detection capability of the seeker is utilized to a greater extent. Under the proposed guidance law, neither the small angle assumption nor time-to-go estimation is needed. The guidance command is continuous and converges to 0 at the desired impact time. Simulation results demonstrate the effectiveness and superiority of the proposed guidance law.


2021 ◽  
Vol 2031 (1) ◽  
pp. 012050
Author(s):  
Shuangxi Liu ◽  
Wei Liu ◽  
Binbin Yan ◽  
Shijun Liu ◽  
Yingming Yin

Sign in / Sign up

Export Citation Format

Share Document