LV100 AIPS Technology—For Future Army Propulsion

Author(s):  
Walter Brockett ◽  
Angelo Koschier

The overall design of and Advanced Integrated Propulsion System (AIPS), powered by an LV100 gas turbine engine, is presented along with major test accomplishments. AIPS was a demonstrator program that included design, fabrication, and test of an advanced rear drive powerpack for application in a future heavy armored vehicle (54.4 tonnes gross weight). The AIPS design achieved significant improvements in volume, performance, fuel consumption, reliability/durability, weight and signature reduction. Major components of AIPS included the recuperated LV100 turbine engine, a hydrokinetic transmission, final drives, self-cleaning air filtration (SCAF), cooling system, signature reduction systems, electrical and hydraulic components, and control systems with diagnostics/prognostics and maintainability features.

1997 ◽  
Vol 30 (18) ◽  
pp. 67-71 ◽  
Author(s):  
Timofei Breikin ◽  
Valentin Arkov ◽  
Gennady Kulikov ◽  
Visakan Kadirkamanathan ◽  
Vijay Patel

Author(s):  
Stephen A. Long ◽  
Patrick A. Reiger ◽  
Michael W. Elliott ◽  
Stephen L. Edney ◽  
Frank Knabe ◽  
...  

For the purpose of assessing combustion effects in a small gas turbine engine, there was a requirement to evaluate the rotating temperature and dynamic characteristics of the power turbine rotor module. This assessment required measurements be taken within the engine, during operation up to maximum power, using rotor mounted thermocouples and strain gages. The acquisition of this data necessitated the use of a telemetry system that could be integrated into the existing engine architecture without affecting performance. Due to space constraints, housing of the telemetry module was limited to placement in a hot section. In order to tolerate the high temperature environment, a cooling system was developed as part of the integration effort to maintain telemetry module temperatures within the limit allowed by the electronics. Finite element thermal analysis was used to guide the design of the cooling system. This was to ensure that sufficient airflow was introduced and appropriately distributed to cool the telemetry cavity, and hence electronics, without affecting the performance of the engine. Presented herein is a discussion of the telemetry system, instrumentation design philosophy, cooling system design and verification, and sample of the results acquired through successful execution of the full engine test program.


Author(s):  
D. S. Kalabuhov ◽  
V. A. Grigoriev ◽  
A. O. Zagrebelnyi ◽  
D. S. Diligensky

Abstract The article describes the adjusted parametrical turboshaft gas turbine engine mass model that is applied for the helicopter engine operating cycle parameters optimization during a conceptual engineering. During the operation of the take-off mass, which indirectly characterizes the cost of materials for the entire designed aircraft system, one of the main components which determines the coordination of the helicopter and its engine parameters is a mass of the gas turbine power unit. Moreover, during the parametrical studies the designed mass of a power unit should be defined by the parameters of a gas turbine engine; however, this type of dependencies is not that well enough studied for today. Therefore the evaluation of the dependency between the engine mass and its operational parameters is performed by using either generalized statistical data for existing designs or by parametrical mass models since there is nothing more precise up to date. However as new types of gas turbine engines appear it is required to update the values of parametrical model coefficients. This article describes the influence of different cooling system units on the engine mass and also clarifies the coefficients that specify the engine mass advance by introducing the structural-technological measures. The last one is highly dependent on the designed gas turbine engine (GTE) serial production year. It also has been proposed to represent some coefficients that are used in the model as dependencies of the main operational parameters. This has allowed to perform the parametrical study and to gain predictive solutions in correspondence to the modern engine design level.


Author(s):  
Roberto Andriani ◽  
Umberto Ghezzi ◽  
Antonella Ingenito ◽  
Fausto Gamma ◽  
Antonio Agresta

Author(s):  
Carlos J. Mendez ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam R. Gollahalli

Alcohols serve as an alternate energy resource to the conventional petroleum-based fuels. The objective of this study was to document the performance and emission characteristics of blends of n-propanol and Jet A fuel in a small-scale gas turbine engine. The experiments were conducted in a 30kW gas turbine engine with a single-stage centrifugal flow compressor, annular combustion chamber and a single-stage axial flow turbine. In addition to neat propanol and Jet A fuel, three blends, with 25%, 50% and 75% of propanol by volume, were used as the fuels. The thrust, thrust-specific fuel consumption, and the concentrations of CO and NOx in the exhaust were measured and compared with those measured with Jet A fuel. The engine was operated at the same throttle settings with all the fuels. The operational range of engine rotational speed was shifted downwards with the addition of propanol due to its lower heating value. The thrust specific fuel consumption increased with the addition of propanol, while the CO emission index increased and NOx emission index decreased.


Author(s):  
A. Yu. Brycheva ◽  
V. D. Molyakov

The article considers capabilities of the gas turbine engine to be used as a drive of the crude oil pump. It is noted that the gas turbine drive proves to be more advantageous than the electric motor when there is no external power supply or building periods of power transmission lines are significantly long, as well as quantities of oil products pumped are often changed.The main objective of this work is to select the optimum engine cycle parameters for a particular pump model, which oil pumping stations use. As an object of research, a crude oil pump of the НМ 10000 / 1.25-210 brand was chosen. The paper presents technical characteristics of the HM 10000 / 1.25-210 centrifugal pump and experimental values of head, power, and efficiency of the pump for a number of feeds. To obtain the pressure and power characteristics of a centrifugal pump for different rotational speeds of the rotor the similarity formulas are used.As the centrifugal pump drive, the paper considers a two-shaft plant with the free power turbine. This scheme was chosen in accordance with the features of the gas turbine pump unit at the oil pumping station. It is noted that the free power turbine scheme allows us to bring into accordance the characteristics of a gas turbine engine and an oil pump in abnormal modes, since there is no mechanical connection between high and low pressure turbines.The paper presents the calculated parameters of the gas turbine engine cycle with power Ne = 8 MW. The graphs show dependence of the airflow rate GB, the specific fuel consumption Ce and the efficiency ηe on the degree of pressure increase πk in the compressor. In accordance with the graphs, the optimum value of the degree of pressure increase πk = 15 in the compressor  is adopted. With πk = 15, the specific fuel consumption in the gas turbine engine with power Ne = 8 MW is equal to Ce = 0,22 kg/kW*h and the airflow rate is GB = 20,5kg/s. The efficiency of the engine with the selected parameters is ηe = 38,4%.It is noted that in order to ensure the most economical gas turbine engine operation, it is necessary to select the optimal control program, which is determined taking into account the load characteristics, in this case the characteristics of the pump.


Author(s):  
Richard H. Bunce ◽  
Francisco Dovali-Solis ◽  
Robert W. Baxter

It is important to monitor the quality of the air used in the cooling system of a gas turbine engine. There can be many reasons that particulates smaller than the minimum size removed by typical engine air filters can enter the secondary air system piping in a gas turbine engine system. Siemens has developed a system that provide real time monitoring of particulate concentrations by adapting a commercial electrodynamic devise for use within the confines of the gas turbine secondary air system with provision for a grab sample option to collect samples for laboratory analysis. This on-line monitoring system is functional at typical engine cooling system piping operating pressure and temperature. The system is calibrated for detection of iron oxide particles in the 1 to 100 micrometer range at concentration of from 1 to 50 parts per million mass wet (ppmmw) The electro dynamic device is nominally operable at 800°C. The particulate monitoring system requires special mounting and antenna. This system may be adjusted for other materials, sizes and concentrations. The system and its developmental application are described. The system has been tested and test results are reviewed. The test application was the cooling air piping of a Siemens gas turbine engine. Multiple locations were monitored. The cooling system in this engine incorporates an air cooler and the particulate monitoring system was tested upstream and downstream of the air cooler for temperature contrast. The monitor itself is limited to the piping system and not the engine gas-path.


Author(s):  
Stephen A Long ◽  
Stephen L Edney ◽  
Patrick A Reiger ◽  
Michael W Elliott ◽  
Frank Knabe ◽  
...  

For the purpose of assessing combustion effects in a small gas turbine engine, there was a requirement to evaluate the rotating temperature and dynamic characteristics of the power turbine rotor module. This assessment required measurements be taken within the engine, during operation up to maximum power, using rotor mounted thermocouples and strain gauges. The acquisition of this data necessitated the use of a telemetry system that could be integrated into the existing engine architecture without affecting performance. As a result of space constraints, housing of the telemetry module was limited to placement in a hot section. To tolerate the high temperature environment, a cooling system was developed as part of the integration effort to maintain telemetry module temperatures within the limit allowed by the electronics. Finite element thermal analysis was used to guide the design of the cooling system. This was to ensure that sufficient airflow was introduced and appropriately distributed to cool the telemetry cavity, and hence electronics, without affecting the performance of the engine. Presented herein is a discussion of the telemetry system, instrumentation design philosophy, cooling system design and verification, and sample of the results acquired through successful execution of the full engine test program.


Author(s):  
EP Filinov ◽  
VS Kuz’michev ◽  
A Yu Tkachenko ◽  
YaA Ostapyuk ◽  
IN Krupenich

Development of a gas turbine engine starts with optimization of the working process parameters. Turbine inlet temperature is among the most influential parameters that largely determine performance of an engine. As typical turbine inlet temperatures substantially exceed the point where metal turbine blades maintain reasonable thermal strength, proper modeling of the turbine cooling system becomes crucial for optimization of the engine’s parameters. Currently available numerical models are based on empirical data and thus must be updated regularly. This paper reviews the published information on turbine cooling requirements, and provides an approximation curve that generalizes data on all types of blade/vane cooling and is suitable for computer-based optimization.


Sign in / Sign up

Export Citation Format

Share Document