scholarly journals 115. Correction of the Sickle-Cell Disease Mutation in Human Hematopoietic Stem/Progenitor Cells

2015 ◽  
Vol 23 ◽  
pp. S48
Author(s):  
Megan D. Hoban ◽  
Matthew C. Mendel ◽  
Zulema Romero ◽  
Michael L. Kaufman ◽  
Alok V. Joglekar ◽  
...  
Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2199
Author(s):  
Caterina P. Minniti ◽  
Seda S. Tolu ◽  
Kai Wang ◽  
Zi Yan ◽  
Karl Robert ◽  
...  

The concentration of circulating hematopoietic stem and progenitor cells has not been studied longitudinally. Here, we report that the proportions of Lin-CD34+38- hematopoietic multipotent cells (HMCs) and of Lin-CD34+CD38+ hematopoietic progenitors cells (HPCs) are highly variable between individuals but stable over long periods of time, in both healthy individuals and sickle cell disease (SCD) patients. This suggests that these proportions are regulated by genetic polymorphisms or by epigenetic mechanisms. We also report that in SCD patients treated with hydroxyurea, the proportions of circulating HMCs and HPCs show a strong positive and negative correlation with fetal hemoglobin (HbF) levels, respectively. Titration of 65 cytokines revealed that the plasma concentration of chemokines CCL2, CCL11, CCL17, CCL24, CCL27, and PDGF-BB were highly correlated with the proportion of HMCs and HPCs and that a subset of these cytokines were also correlated with HbF levels. A linear model based on four of these chemokines could explain 80% of the variability in the proportion of circulating HMCs between individuals. The proportion of circulating HMCs and HPCs and the concentration of these chemokines might therefore become useful biomarkers for HbF response to HU in SCD patients. Such markers might become increasingly clinically relevant, as alternative treatment modalities for SCD are becoming available.


2019 ◽  
Vol 27 (8) ◽  
pp. 1389-1406 ◽  
Author(s):  
Zulema Romero ◽  
Anastasia Lomova ◽  
Suzanne Said ◽  
Alexandra Miggelbrink ◽  
Caroline Y. Kuo ◽  
...  

2018 ◽  
Author(s):  
Jiyung Shin ◽  
Stacia K. Wyman ◽  
Mark A. Dewitt ◽  
Nicolas L Bray ◽  
Jonathan Vu ◽  
...  

SummaryHematopoietic stem cells (HSCs) are the source of all blood components, and genetic defects in these cells are causative of disorders ranging from severe combined immunodeficiency to sickle cell disease. However, genome editing of long-term repopulating HSCs to correct mutated alleles has been challenging. HSCs have the ability to either be quiescent or cycle, with the former linked to stemness and the latter involved in differentiation. Here we investigate the link between cell cycle status and genome editing outcomes at the causative codon for sickle cell disease in adult human CD34+ hematopoietic stem and progenitor cells (HSPCs). We show that quiescent HSPCs that are immunophenotypically enriched for engrafting stem cells predominantly repair Cas9-induced double strand breaks (DSBs) through an error-prone non-homologous end-joining (NHEJ) pathway and exhibit almost no homology directed repair (HDR). By contrast, non-quiescent cycling stem-enriched cells repair Cas9 DSBs through both error-prone NHEJ and fidelitous HDR. Pre-treating bulk CD34+ HSPCs with a combination of mTOR and GSK-3 inhibitors to induce quiescence results in complete loss of HDR in all cell subtypes. We used these compounds, which were initially developed to maintain HSCs in culture, to create a new strategy for editing adult human HSCs. CD34+ HSPCs are edited, allowed to briefly cycle to accumulate HDR alleles, and then placed back in quiescence to maintain stemness, resulting in 6-fold increase in HDR/NHEJ ratio in quiescent, stem-enriched cells. Our results reveal the fundamental tension between quiescence and editing in human HSPCs and suggests strategies to manipulate HSCs during therapeutic genome editing.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. 2836-2838 ◽  
Author(s):  
Ross M. Fasano ◽  
Alessandro Monaco ◽  
Emily Riehm Meier ◽  
Philippe Pary ◽  
A. Hallie Lee-Stroka ◽  
...  

Abstract African individuals harbor molecular RH variants, which permit alloantibody formation to high-prevalence Rh antigens after transfusions. Genotyping identifies such RH variants, which are often missed by serologic blood group typing. Comprehensive molecular blood group analysis using 3 genotyping platforms, nucleotide sequencing, and serologic evaluation was performed on a 7-year-old African male with sickle cell disease who developed an “e-like” antibody shortly after initiating monthly red blood cell (RBC) transfusions for silent stroke. Genotyping of the RH variant predicted a severe shortage of compatible RBCs for long-term transfusion support, which contributed to the decision for hematopoetic stem cell transplantation. RH genotyping confirmed the RH variant in the human leukocyte antigen–matched sibling donor. The patient's (C)ces type 1 haplotype occurs in up to 11% of African American sickle cell disease patients; however, haplotype-matched RBCs were serologically incompatible. This case documents that blood unit selection should be based on genotype rather than one matching haplotype.


2016 ◽  
Vol 20 (6) ◽  
pp. 831-835 ◽  
Author(s):  
Abdulrahman Alsultan ◽  
Wasil Jastaniah ◽  
Sameera Al Afghani ◽  
Muneer H. Al Bagshi ◽  
Zaki Nasserullah ◽  
...  

2021 ◽  
Author(s):  
Moataz Dowaidar

Autologous transplantation of gene-modified HSCs might be used to treat Sickle Cell Disease (SCD) once and for all. Hematopoietic Stem Cell (HSC) gene therapy with lentiviral-globin gene addition was optimized by HSC collection, vector constructs, lentiviral transduction, and conditioning in the current gene therapy experiment for SCD, resulting in higher gene marking and phenotypic correction. Further advancements over the next decade should allow for a widely approved gene-addition therapy. Long-term engraftment is crucial for gene-corrected CD34+ HSCs, which might be addressed in the coming years, and gene repair of the SCD mutation in the-globin gene can be achieved in vitro using genome editing in CD34+ cells. Because of breakthroughs in efficacy, safety, and delivery strategies, in vivo gene addition and gene correction in BM HSCs is advancing. Overall, further research is needed, but HSC-targeted gene addition/gene editing therapy is a promising SCD therapy with curative potential that might be widely available soon.


Sign in / Sign up

Export Citation Format

Share Document