scholarly journals 225. In Vitro Repair of Rhodopsin Mutation by Spliceosome-Mediated RNA Trans-Splicing

2013 ◽  
Vol 21 ◽  
pp. S87
1988 ◽  
Vol 8 (6) ◽  
pp. 2361-2366 ◽  
Author(s):  
K A Jarrell ◽  
R C Dietrich ◽  
P S Perlman

A self-splicing group II intron of yeast mitochondrial DNA (aI5g) was divided within intron domain 4 to yield two RNAs that trans-spliced in vitro with associated trans-branching of excised intron fragments. Reformation of the domain 4 secondary structure was not necessary for the trans reaction, since domain 4 sequences were shown to be dispensable. Instead, the trans reaction depended on a previously unpredicted interaction between intron domain 5, the most highly conserved region of group II introns, and another region of the RNA. Domain 5 was shown to be essential for cleavage at the 5' splice site. It stimulated that cleavage when supplied as a trans-acting RNA containing only 42 nucleotides of intron sequence. The relevance of our findings to in vivo trans-splicing mechanisms is discussed.


2018 ◽  
Vol 46 (10) ◽  
pp. 2402-2413 ◽  
Author(s):  
Hiroshi Sasaki ◽  
Benjamin B. Rothrauff ◽  
Peter G. Alexander ◽  
Hang Lin ◽  
Riccardo Gottardi ◽  
...  

Background: Radial tears of the meniscus are a common knee injury, frequently resulting in osteoarthritis. To date, there are no established, effective treatments for radial tears. Adipose-derived stem cells (ASCs) may be an attractive cell source for meniscal regeneration because they can be quickly isolated in large number and are capable of undergoing induced fibrochondrogenic differentiation mediated by transforming growth factor β3 (TGF-β3). However, the use of ASCs for meniscal repair is largely unexplored. Hypothesis: ASC-seeded hydrogels with preloaded TGF-β3 will improve meniscal healing of radial tears, as modeled in an explant model. Study Design: Controlled laboratory study. Methods: With an institutional review board–exempted protocol, human ASCs were isolated from the infrapatellar fat pads of 3 donors, obtained after total knee replacement, and characterized. ASCs were encapsulated in photocrosslinkable methacrylated gelatin hydrogels to form 3-dimensional constructs, which were placed into tissue culture. The effect of TGF-β3—whether preloaded into the hydrogel or added as a soluble medium supplement—on matrix-sulfated proteoglycan deposition in the constructs was evaluated. A meniscal explant culture model was used to simulate meniscal repair. Cylindrical-shaped explants were excised from the inner avascular region of adult bovine menisci, and a radial tear was modeled by cutting perpendicular to the meniscal main fibers to the length of the radius. Six combinations of hydrogels—namely, acellular and ASC-seeded hydrogels supplemented with preloaded TGF-β3 (2 µg/mL) or soluble TGF-β3 (10 ng/mL) and without supplement—were injected into the radial tear and stabilized by photocrosslinking with visible light. At 4 and 8 weeks of culture, healing was assessed through histology, immunofluorescence staining, and mechanical testing. Results: ASCs isolated from the 3 donors exhibited colony-forming and multilineage differentiation potential. Hydrogels preloaded with TGF-β3 and those cultured in soluble TGF-β3 showed robust matrix-sulfated proteoglycan deposition. ASC-seeded hydrogels promoted superior healing as compared with acellular hydrogels, with preloaded or soluble TGF-β3 further improving histological scores and mechanical properties. Conclusion: These findings demonstrated that ASC-seeded hydrogels preloaded with TGF-β3 enhanced healing of radial meniscal tears in an in vitro meniscal repair model. Clinical Relevance: Injection delivery of ASCs in a TGF-β3-preloaded photocrosslinkable hydrogel represents a novel candidate strategy to repair meniscal radial tears and minimize further osteoarthritic joint degeneration.


2008 ◽  
Vol 467 (6) ◽  
pp. 1557-1567 ◽  
Author(s):  
Amy L. McNulty ◽  
J. Brice Weinberg ◽  
Farshid Guilak

Author(s):  
Luitgard Mitzel-Landbeck ◽  
Gisela Schutz ◽  
Ulrich Hagen

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Xingxing He ◽  
Fang Liu ◽  
Jingjun Yan ◽  
Yunan Zhang ◽  
Junwei Yan ◽  
...  

2020 ◽  
Vol 21 (11) ◽  
pp. 4011 ◽  
Author(s):  
Anniina Jaakkonen ◽  
Gerrit Volkmann ◽  
Hideo Iwaï

Monoclonal antibodies, engineered antibodies, and antibody fragments have become important biological therapeutic platforms. The IgG format with bivalent binding sites has a modular structure with different biological roles, i.e., effector and binding functions, in different domains. We demonstrated the reconstruction of an IgG-like domain structure in vitro by protein ligation using protein trans-splicing. We produced various binding domains to replace the binding domain of IgG from Escherichia coli and the Fc domain of human IgG from Brevibacillus choshinensis as split-intein fusions. We showed that in vitro protein ligation could produce various Fc-fusions at the N-terminus in vitro from the independently produced domains from different organisms. We thus propose an off-the-shelf approach for the combinatorial production of Fc fusions in vitro with several distinct binding domains, particularly from naturally occurring binding domains. Antiviral lectins from algae are known to inhibit virus entry of HIV and SARS coronavirus. We demonstrated that a lectin could be fused with the Fc-domain in vitro by protein ligation, producing an IgG-like molecule as a “lectibody”. Such an Fc-fusion could be produced in vitro by this approach, which could be an attractive method for developing potential therapeutic agents against rapidly emerging infectious diseases like SARS coronavirus without any genetic fusion and expression optimization.


Sign in / Sign up

Export Citation Format

Share Document