scholarly journals An Off-the-Shelf Approach for the Production of Fc Fusion Proteins by Protein Trans-Splicing towards Generating a Lectibody In Vitro

2020 ◽  
Vol 21 (11) ◽  
pp. 4011 ◽  
Author(s):  
Anniina Jaakkonen ◽  
Gerrit Volkmann ◽  
Hideo Iwaï

Monoclonal antibodies, engineered antibodies, and antibody fragments have become important biological therapeutic platforms. The IgG format with bivalent binding sites has a modular structure with different biological roles, i.e., effector and binding functions, in different domains. We demonstrated the reconstruction of an IgG-like domain structure in vitro by protein ligation using protein trans-splicing. We produced various binding domains to replace the binding domain of IgG from Escherichia coli and the Fc domain of human IgG from Brevibacillus choshinensis as split-intein fusions. We showed that in vitro protein ligation could produce various Fc-fusions at the N-terminus in vitro from the independently produced domains from different organisms. We thus propose an off-the-shelf approach for the combinatorial production of Fc fusions in vitro with several distinct binding domains, particularly from naturally occurring binding domains. Antiviral lectins from algae are known to inhibit virus entry of HIV and SARS coronavirus. We demonstrated that a lectin could be fused with the Fc-domain in vitro by protein ligation, producing an IgG-like molecule as a “lectibody”. Such an Fc-fusion could be produced in vitro by this approach, which could be an attractive method for developing potential therapeutic agents against rapidly emerging infectious diseases like SARS coronavirus without any genetic fusion and expression optimization.

PLoS ONE ◽  
2009 ◽  
Vol 4 (4) ◽  
pp. e5185 ◽  
Author(s):  
A. Sesilja Aranko ◽  
Sara Züger ◽  
Edith Buchinger ◽  
Hideo Iwaï

2014 ◽  
Vol 461 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Qin Wu ◽  
Zengqiang Gao ◽  
Yong Wei ◽  
Guolin Ma ◽  
Yuchuan Zheng ◽  
...  

The first crystal trans-structure of Npu DnaE intein identified the role of two conserved residues NArg50 and CSer35 in asparagine cyclization. In vitro splicing assays prove that these two residues synergistically enhance the protein trans-splicing efficiency.


1998 ◽  
Vol 95 (16) ◽  
pp. 9226-9231 ◽  
Author(s):  
Hong Wu ◽  
Zhuma Hu ◽  
Xiang-Qin Liu

A split intein capable of protein trans-splicing is identified in a DnaE protein of the cyanobacterium Synechocystis sp. strain PCC6803. The N- and C-terminal halves of DnaE (catalytic subunit α of DNA polymerase III) are encoded by two separate genes, dnaE-n and dnaE-c, respectively. These two genes are located 745,226 bp apart in the genome and on opposite DNA strands. The dnaE-n product consists of a N-extein sequence followed by a 123-aa intein sequence, whereas the dnaE-c product consists of a 36-aa intein sequence followed by a C-extein sequence. The N- and C-extein sequences together reconstitute a complete DnaE sequence that is interrupted by the intein sequences inside the β- and τ-binding domains. The two intein sequences together reconstitute a split mini-intein that not only has intein-like sequence features but also exhibited protein trans-splicing activity when tested in Escherichia coli cells.


2011 ◽  
Vol 2 (3) ◽  
pp. 183-198 ◽  
Author(s):  
A. Sesilja Aranko ◽  
Gerrit Volkmann

AbstractProtein trans-splicing (PTS) exerted by split inteins is a protein ligation reaction which enables overcoming the barriers of conventional heterologous protein production. We provide an overview of the current state-of-the-art in split intein engineering, as well as the achievements of PTS technology in the realm of protein structure-function analyses, including incorporation of natural and artificial protein modifications, controllable protein reconstitution, segmental isotope labeling and protein cyclization. We further discuss factors crucial for the successful implementation of PTS in these protein engineering approaches, and speculate on necessary future endeavours to make PTS a universally applicable protein ligation tool.


2021 ◽  
Author(s):  
Shubhendu Palei ◽  
Henning D. Mootz

A dual-intein approach for the preparation of head-to-tail macrocyclic peptides is reported, where synthetic and genetically encoded fragments are ligated by two native peptide bonds. A split intein ligates the...


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 123
Author(s):  
Mariangela Marrelli ◽  
Maria Rosaria Perri ◽  
Valentina Amodeo ◽  
Francesca Giordano ◽  
Giancarlo A. Statti ◽  
...  

Photochemotherapy is one of the most interesting current therapeutic approaches for the treatment of melanoma. Different classes of naturally occurring phytochemicals demonstrated interesting photoactive properties. The aim of this study was to evaluate the photocytotoxic potential of two Cachrys species from Southern Italy: C. sicula and C. libanotis (Apiaceae). The enriched-coumarin extracts were obtained from aerial parts through both traditional maceration and pressurized cyclic solid-liquid (PCSL) extraction using Naviglio extractor®. Qualitative and quantitative analyses of furanocoumarins were performed with GC-MS. The photocytotoxic effects were verified on C32 melanoma cells irradiated at a dose of 1.08 J/cm2. The apoptotic responses were also assessed. Moreover, phenolic content and the in vitro antioxidant potential were estimated. Xanthotoxin, bergapten, and isopimpinellin were identified. All the samples induced concentration-dependent photocytotoxic effects (IC50 ranging from 3.16 to 18.18 μg/mL). The C. libanotis sample obtained with Naviglio extractor® was the most effective one (IC50 = 3.16 ± 0.21 μg/mL), followed by C. sicula sample obtained with the same technique (IC50 = 8.83 ± 0.20 μg/mL). Both Cachrys samples obtained through PCSL induced up-regulation of apoptotic signals such as BAX (Bcl2-associated X protein) and PARP (poly ADP-ribose polymerase) cleavage. Moreover, these samples proved to be more photoactive, giving a greater upregulation of p21 protein in the presence of UVA radiation. Obtained results suggest that investigated species could be promising candidates for further investigations aimed to find new potential drugs for the photochemotherapy of skin cancer.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3005
Author(s):  
Kanchan Bhardwaj ◽  
Ana Sanches Silva ◽  
Maria Atanassova ◽  
Rohit Sharma ◽  
Eugenie Nepovimova ◽  
...  

Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1514
Author(s):  
Ameya Sharma ◽  
Vivek Puri ◽  
Pradeep Kumar ◽  
Inderbir Singh ◽  
Kampanart Huanbutta

Various systematic phases such as inflammation, tissue proliferation, and phases of remodeling characterize the process of wound healing. The natural matrix system is suggested to maintain and escalate these phases, and for that, microfibers were fabricated employing naturally occurring polymers (biopolymers) such as sodium alginate, gelatin and xanthan gum, and reinforcing material such as nanoclay was selected. The fabrication of fibers was executed with the aid of extrusion-gelation method. Rifampicin, an antibiotic, has been incorporated into a biopolymeric solution. RF1, RF2, RF3, RF4 and RF5 were coded as various formulation batches of microfibers. The microfibers were further characterized by different techniques such as SEM, DSC, XRD, and FTIR. Mechanical properties and physical evaluations such as entrapment efficiency, water uptake and in vitro release were also carried out to explain the comparative understanding of the formulation developed. The antimicrobial activity and whole blood clotting of fabricated fibers were additionally executed, hence they showed significant results, having excellent antimicrobial properties; they could be prominent carriers for wound healing applications.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 361
Author(s):  
Rui-Zhu Shi ◽  
Yuan-Qing Pan ◽  
Li Xing

The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.


Sign in / Sign up

Export Citation Format

Share Document