scholarly journals 752. Site-Specific Genome Editing of Hematopoietic Stem Cells for Beta Thalassemia Gene Therapy

2014 ◽  
Vol 22 ◽  
pp. S290-S291
Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-23-SCI-23
Author(s):  
Giuliana Ferrari

Beta-thalassemia and sickle cell disease (SCD) are congenital anemias caused by mutations in the beta-globin gene, resulting in either reduced/absent production of globin chains or abnormal hemoglobin structure. At present, the definitive cure is represented by allogeneic hematopoietic stem cell transplantation, with a probability to find a well-matched donor of <25%. Experimental gene therapy for hemoglobinopathies is based on transplantation of autologous hematopoietic stem cells genetically modified to express therapeutic hemoglobin levels. Approaches to genetically modify HSCs for treatment of hemoglobinopathies include: 1) the addition of globin genes by lentiviral vectors and 2) gene editing by nucleases to reactivate fetal hemoglobin either through inhibition of repressors or by reproducing mutations associated with high fetal hemoglobin levels. The outcomes of early clinical trials are showing the safety and potential efficacy, as well as the hurdles still limiting a general application.Current challenges and improved strategies will be presented and discussed. Disclosures No relevant conflicts of interest to declare. OffLabel Disclosure: Plerixafor


2020 ◽  
Vol 20 ◽  
pp. 451-458 ◽  
Author(s):  
Hua Yang ◽  
Keyun Qing ◽  
Geoffrey D. Keeler ◽  
Ling Yin ◽  
Mario Mietzsch ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1492
Author(s):  
Lola Koniali ◽  
Carsten W. Lederer ◽  
Marina Kleanthous

Accessibility of hematopoietic stem cells (HSCs) for the manipulation and repopulation of the blood and immune systems has placed them at the forefront of cell and gene therapy development. Recent advances in genome-editing tools, in particular for clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) and CRISPR/Cas-derived editing systems, have transformed the gene therapy landscape. Their versatility and the ability to edit genomic sequences and facilitate gene disruption, correction or insertion, have broadened the spectrum of potential gene therapy targets and accelerated the development of potential curative therapies for many rare diseases treatable by transplantation or modification of HSCs. Ongoing developments seek to address efficiency and precision of HSC modification, tolerability of treatment and the distribution and affordability of corresponding therapies. Here, we give an overview of recent progress in the field of HSC genome editing as treatment for inherited disorders and summarize the most significant findings from corresponding preclinical and clinical studies. With emphasis on HSC-based therapies, we also discuss technical hurdles that need to be overcome en route to clinical translation of genome editing and indicate advances that may facilitate routine application beyond the most common disorders.


2021 ◽  
Vol 20 ◽  
pp. 451-462
Author(s):  
Suvd Byambaa ◽  
Hideki Uosaki ◽  
Tsukasa Ohmori ◽  
Hiromasa Hara ◽  
Hitoshi Endo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document