scholarly journals Genetic Engineering in Hematopoietic Stem Cells for Gene Therapy of Hemoglobinopathies

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-23-SCI-23
Author(s):  
Giuliana Ferrari

Beta-thalassemia and sickle cell disease (SCD) are congenital anemias caused by mutations in the beta-globin gene, resulting in either reduced/absent production of globin chains or abnormal hemoglobin structure. At present, the definitive cure is represented by allogeneic hematopoietic stem cell transplantation, with a probability to find a well-matched donor of <25%. Experimental gene therapy for hemoglobinopathies is based on transplantation of autologous hematopoietic stem cells genetically modified to express therapeutic hemoglobin levels. Approaches to genetically modify HSCs for treatment of hemoglobinopathies include: 1) the addition of globin genes by lentiviral vectors and 2) gene editing by nucleases to reactivate fetal hemoglobin either through inhibition of repressors or by reproducing mutations associated with high fetal hemoglobin levels. The outcomes of early clinical trials are showing the safety and potential efficacy, as well as the hurdles still limiting a general application.Current challenges and improved strategies will be presented and discussed. Disclosures No relevant conflicts of interest to declare. OffLabel Disclosure: Plerixafor

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. SCI-16-SCI-16
Author(s):  
Mitchell J Weiss

Genetic forms of anemia caused by HBB gene mutations that impair beta globin production are extremely common worldwide. The resultant disorders, mainly sickle cell disease (SCD) and beta-thalassemia, cause substantial morbidity and early mortality. Treatments for these diseases include medical therapies and bone marrow transplantation (BMT), which can be curative. However, medical therapies are suboptimal and BMT is associated with serious toxicities, particularly because HLA-matched allogeneic sibling donors are not available for most patients. Thus, new therapies are urgently needed for millions of affected individuals. Gene therapy offers great promise to cure SCD and beta thalassemia and emerging genome editing technologies represent a new form of gene therapy. Approaches to cure SCD and beta-thalassemia via genome editing include: 1) Correction of HBB mutations by homology directed repair (HDR); 2) use of non-homologous end joining (NHEJ) to activate gamma globin production and raise fetal hemoglobin (HbF) levels; 3) NHEJ to disrupt alpha-globin genes (HBA1 or HBA2) and thereby alleviate globin chain imbalance in intermediately severe forms of beta thalassemia. Challenges for these approaches include selection of the most effective genome editing tools, optimizing their delivery to hematopoietic stem cells (HSCs), improving specificity and better understanding potential off target effects, particularly those that are biologically relevant. Technologies for genome editing are advancing rapidly and being tested in preclinical models for HBB-mutated disorders. Ultimately, however, the best strategies can only be identified in clinical trials. This will require close collaborations between basic/translational researchers who study genome editing, clinical hematologists and collaboration between experts in academia and the bio-pharmaceutical industry. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Pooja Rai ◽  
Kamal Uddin Zaidi ◽  
Vijay Thawani

Genetic disorders caused by mutations in the β-globin gene are widely known as the human β-hemoglobinopathies, in which there is β-thalassemia. In recent years, effort has been made to identify the natural inducers and drug treatments which can increase the synthesis of fetal hemoglobin and promote the expression of fetal γ-globin gene. This review aims to reveal the novel screening platforms for identifying potential herbal inducers with high efficiency and accuracy and to describe the hematopoietic stem cells remedies to provide perspectives in fetal hemoglobin reactivation for treating β-thalassemia.


2019 ◽  
Vol 3 (21) ◽  
pp. 3379-3392 ◽  
Author(s):  
Jean-Yves Métais ◽  
Phillip A. Doerfler ◽  
Thiyagaraj Mayuranathan ◽  
Daniel E. Bauer ◽  
Stephanie C. Fowler ◽  
...  

Key Points Cas9 editing of the γ-globin gene promoters in hematopoietic stem cells (HSCs) increases red cell HbF by ≤40%. No deleterious effects on hematopoiesis or off-target mutations were detected 16 weeks after xenotransplantation of edited HSCs.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 341-341
Author(s):  
Silvia Bakovic ◽  
Patricia M. Rosten ◽  
Connie J. Eaves ◽  
R. Keith Humphries

Abstract The ultimate promise of gene therapy for patients with hemoglobinopathies depends on the development of safe strategies for achieving 2 goals. One is to obtain efficient and permanent correction of the gene defect in autologous hematopoietic stem cells (HSCs). The second is to develop methods for the pre-transplant amplification of transduced HSCs to high levels to ensure that they will outcompete the large residual endogenous HSC population remaining in non-myeloablated hosts (e.g. previous experiments have shown that a minimum of ~5 × 106 normal adult mouse bone marrow (BM) cells (~500 HSC) is required to achieve a level of chimerism of 20% in mice given 200 cGy). The ability of HOXB4 to promote HSC self-renewal divisions in short term culture prior to their use as transplants offers an attractive approach to achieve this latter goal. As a first test we transduced day-4 5FU BM cells from normal mice with a MSCV-HOXB4-IRES-GFP or control MSCV-IRES-GFP virus and then transplanted the cells either before or after 7 days maintenance in vitro into normal recipients given 250 cGy. Mice transplanted with an estimated 50 HSCs immediately after transduction with either virus reached equivalent low levels of chimerism (~10%) showing that HOXB4 does not impart an in vivo selective growth advantage under sublethal conditions. After ex vivo culture, the GFP transduced cells yielded an even lower level of chimerism (~5%), in contrast recipients of cultured HOXB4-transduced cells attained much higher stable levels of lympho-myeloid chimerism (~50%), indicative of a marked expansion of the HSCs pre-transplant and their retention of robust competitive repopulating potential. We then applied this approach to a gene therapy model of severe β-thalassemia in mice bearing a homozygous deletion of the β-major globin gene (β-MDD). To model a transplant of genetically corrected cells, BM cells were harvested from day-4 5FU pre-treated congenic wild-type donors and transduced with the HOXB4 virus. Cells were then cultured for 10 days and the progeny of 200K starting cells transplanted into 3 β-MDD and 4 normal recipients given 200 cGy. Transplantation of 500K freshly harvested day-4 5FU BM cells into 4 similarly conditioned control mice failed to produce significant chimerism (1–3% at 5 months). In contrast, all 4 control recipients of ex vivo expanded HOXB4-transduced cells exhibited significant stable chimerism (21±6% at 5 months). Similar levels of chimerism were also achieved in all 3 β-MDD recipients (18–76%), one of which was sustained at 34% at 5 months (52% in the RBCs). This was associated with substantial improvement in the Hct (36% vs 23% in untreated β-MDD), Hb (10.5 vs 5 g/dl) and RBC morphology. Southern blot analyses performed on 53 individual in vitro-expanded myeloid colonies generated from FACS-selected GFP+ marrow cells from this mouse 2 months post-transplant showed 19 distinct integration patterns indicating reconstitution from polyclonal expanded HSCs. This conclusion was further confirmed by proviral integration site analyses, which identified 13 separate integration sites from 9 colonies that had unique proviral patterns. These data demonstrate the curative potential of ex vivo expanded HSCs in a preclinical model of β-thalassemia treated with non-myeloablative conditioning. They also underscore the potential of HOXB4 as a potent tool to achieve the HSC expansions required.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3759-3759
Author(s):  
Cecilia Barese ◽  
Connor King ◽  
Stephanie Sellers ◽  
Allen E Krouse ◽  
Mark E Metzger ◽  
...  

Abstract Abstract 3759 For genetic blood diseases, such as primary immunodeficiencies, gene therapy targeted to hematopoietic stem cells (HSCs) is a feasible and now proven effective therapeutic option for patients who lack a histocompatible HSC. However, the risk of adverse outcomes resulting from insertional oncogenesis is a major concern. We are investigating whether inclusion of the herpes simplex virus thymidine kinase (HSVtk) gene into integrating vectors into rhesus macaque HSCs confers ganciclovir (GCV) sensitivity allowing ablation of vector-containing cells from the blood and other hematopoietic compartments, as an approach to increasing safety of gene therapy procedures. HSVtk suicide genes have been studied in detail in transduced mature T cells, but never in stem and progenitor cells. We infused autologous CD34+ cells transduced ex vivo with gammaretrovirus vectors encoding the HSVtk as suicide gene along with marker genes into 4 rhesus macaques, following myeloablative irradiation. In the first animal, a vector consisting of the MND backbone driving the sr39 high affinity tk mutant, and IRES and a truncated NGFR marker gene was used. A stable marking level of 5% NGFR+ circulating cells was observed for 6 months following transplantation, confirmed by q-PCR. The drug GCV was infused at 5 mg/Kg BID for 21 days. This animal had complete elimination of vector-containing cells in all peripheral blood lineages as assessed by flow cytometry and qPCR, and remains negative now 4 months after GCV discontinuation. Three additional animals were transplanted with autologous CD34+ cells transduced with a vector containing a standard HSVtk gene and GFP as a marker. These animals had lower stable marking levels of approximately 1% at 4 months post-transplant, and after 21 days of GCV, had a clear decrease in the level of GFP+ cells, but not complete ablation, likely due to lower drug-sensitivity of the tk protein expressed by this vector. Cells with a lower level of GFP expression were not eliminated, supporting this hypothesis. Additional animals receiving cells transduced with the sr39 tk retroviral vector and with a lentiviral vector containing a codon-optimized HSVtk are in progress. These data suggest that inclusion of a suicide gene in integrating vectors may be an effective way to address genotoxicity concerns, should clonal outgrowth occur, and increase safety of HSC-targeted gene therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. SCI-19-SCI-19
Author(s):  
Philip D. Gregory

In the more than 20 years since the first successful gene transfer was performed in a human subject (Blaese, R.M. et al. Science 1995; 270, 475-480), the promise of gene therapy has been at once tantalizingly close and just out of reach. Today, gene-modified therapies are being used to treat a variety of diseases, and direct manipulation of the human genome for therapeutic effect is becoming a reality. While many advances in gene-based therapeutics have come in the oncology space, non-malignant hematologic and primary immune disorders remain important targets for these approaches. The ability to manipulate hematopoietic stem cells (HSCs) ex vivo and return the modified HSCs to the patient offers many potential advantages over allogeneic HSC transplantation. Additionally, the potential to introduce new genes with therapeutic potential, or to modify genes to modulate protein expression, may open new avenues for transformative therapies for genetic diseases. The progress of gene therapy for hemoglobinopathies - from the γ-retroviral vector technology that established the field, to the accumulating clinical experience with lentiviral vector-based gene therapy and the potential for gene editing-based approaches to address these diseases - provides insight into the development of genetic therapeutics. Transfusion-dependent β-thalassemia (TDT) and sickle cell disease (SCD) result from pathogenic mutations in the β-globin gene, HBB . Addition of functional HBB genes into autologous hematopoietic stem cells has the potential to offer the long-term therapeutic benefits of allogeneic HSC transplantation without the complications of graft vs host disease. The first human proof of concept of this approach came in a study of the HPV569 lentiviral vector coding for therapeutic β-globin, which was successfully introduced into the HSCs of patients with TDT and resulted in sustained clinical benefit in some patients (Cavazzana-Calvo et al., Nature 2010; 467(7313):318-22). Beyond restoring normal β-globin production, studies with HPV569 and its improved variant BB305, have shown that it is possible to drive expression of a β-globin variant with a point mutation, T87Q, designed to mimic the anti-sickling effect of γ-globin. This innovation may have important implications for patients with SCD, where introduction of normal β-globin may be insufficient to ameliorate the red blood cell sickling and polymerization that can cause painful and damaging vaso-occlusive crises. It has taken more than 20 years for HSC gene addition to reach safety and efficacy thresholds that may allow it to be used routinely for patients with hemoglobinopathies, but this approach is now nearing maturity. Important refinements in LVV architecture and advances in HBB gene cassette design have yielded promising results in multiple clinical studies of TDT and SCD (e.g. Ribeil J.A. et al., N Engl J Med 2017; 376:848-855). There is also significant excitement about the potential for gene editing approaches to address the hemoglobinopathies even as these technologies are just beginning to transition from lab to clinic. Critical questions of both efficacy and safety remain regarding the path forward for nuclease-based editing technologies such as CRISPR, ZFN, and megaTALs. Key lessons from the development of clinical gene addition therapies in the hemoglobinopathies may help chart the path forward for gene editing technologies. Disclosures Gregory: bluebirdbio: Employment; Merck KGaA: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3549-3549
Author(s):  
Sukanya Chumchuen ◽  
Tanapat Pornsukjantra ◽  
Pinyaphat Khamphikham ◽  
Usanarat Anurathapan ◽  
Orapan Sripichai ◽  
...  

LRF/ZBTB7A is a transcription factor that has been recently identified as a new key regulator of fetal hemoglobin (HbF; α2γ2) production in erythroid cells. Reduction of LRF/ZBTB7A expression led to increases in levels of HbF in human CD34+ hematopoietic stem and progenitor cell (HSPC)-derived erythroblast and in human immortalized erythroid line (HUDEP-2). Since reactivation of γ-globin gene is associated with the improvement of clinical manifestations of β-hemoglobinopathy patients, decrement in LRF/ZBTB7A expression might be a substantial interest as a novel target for gene therapy in β-thalassemia. In this study, we investigated the effects of LRF/ZBTB7A downregulation in erythroid cells derived from β-thalassemia/HbE patients in order to evaluate its therapeutic potential. The hematopoietic CD34+ progenitor cells were collected from 3 patients and 3 healthy normal individuals' peripheral blood and subjected for in vitro erythroblast culture. The cells were transduced with lentivirus carrying LRF/ZBTB7A specific shRNA, and used untransduced cells and non-targeted control shRNA (shNTC) as experimental controls. The LRF/ZBTB7A shRNA reduced LRF/ZBTB7A transcript and protein to nearly undetectable levels. Interestingly, downregulation of LRF/ZBTB7A increased expression of γ-globin, ε-globin and ζ-globin in both adult normal and β-thalassemia/HbE derived cells, whereas α-globin, β-globin and δ-globin expression were decreased. As previously reported, we found that the LRF/ZBTB7A knockdown produced a robust increase in HbF levels in both normal (43.3±9.0% vs. 5.9±2.1% in shNTC) and β-thalassemia/HbE erythroblasts (78.1±3.5% vs. 26.3±3.9% in shNTC). Noteworthy, the delay of erythroid differentiation was observed in the LRF/ZBTB7A knockdown cells of both derived from β-thalassemia/HbE patients and normal control, suggesting an additional role of LRF/ZBTB7A in regulating erythroid maturation. These data support the manipulation of LRF/ZBTB7A as one of the most interesting gene therapy candidates for treating the β-thalassemia, but the effect on erythroid cell maturation is needed to be concerned and required further investigation. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Parin Rattananon ◽  
Usanarat Anurathapan ◽  
Kanit Bhukhai ◽  
Suradej Hongeng

β-thalassemia, a disease that results from defects in β-globin synthesis, leads to an imbalance of β- and α-globin chains and an excess of α chains. Defective erythroid maturation, ineffective erythropoiesis, and shortened red blood cell survival are commonly observed in most β-thalassemia patients. In severe cases, blood transfusion is considered as a mainstay therapy; however, regular blood transfusions result in chronic iron overload with life-threatening complications, e.g., endocrine dysfunction, cardiomyopathy, liver disease, and ultimately premature death. Therefore, transplantation of healthy hematopoietic stem cells (HSCs) is considered an alternative treatment. Patients with a compatible human leukocyte antigen (HLA) matched donor can be cured by allogeneic HSC transplantation. However, some recipients faced a high risk of morbidity/mortality due to graft versus host disease or graft failure, while a majority of patients do not have such HLA match-related donors. Currently, the infusion of autologous HSCs modified with a lentiviral vector expressing the β-globin gene into the erythroid progenitors of the patient is a promising approach to completely cure β-thalassemia. Here, we discuss a history of β-thalassemia treatments and limitations, in particular the development of β-globin lentiviral vectors, with emphasis on clinical applications and future perspectives in a new era of medicine.


Sign in / Sign up

Export Citation Format

Share Document