scholarly journals 632. Stealth Delivery: Combining Site-Specific Integration and Cassette Design To Achieve Robust Expression without Impacting Endogenous Gene Expression

2010 ◽  
Vol 18 ◽  
pp. S245-S246
2022 ◽  
Vol 119 (3) ◽  
pp. e2117451119
Author(s):  
Justin M. Shaffer ◽  
Iva Greenwald

Conditional gene expression is a powerful tool for genetic analysis of biological phenomena. In the widely used “lox-stop-lox” approach, insertion of a stop cassette consisting of a series of stop codons and polyadenylation signals flanked by lox sites into the 5′ untranslated region (UTR) of a gene prevents expression until the cassette is excised by tissue-specific expression of Cre recombinase. Although lox-stop-lox and similar approaches using other site-specific recombinases have been successfully used in many experimental systems, this design has certain limitations. Here, we describe the Floxed exon (Flexon) approach, which uses a stop cassette composed of an artificial exon flanked by artificial introns, designed to cause premature termination of translation and nonsense-mediated decay of the mRNA and allowing for flexible placement into a gene. We demonstrate its efficacy in Caenorhabditis elegans by showing that, when promoters that cause weak and/or transient cell-specific expression are used to drive Cre in combination with a gfp(flexon) transgene, strong and sustained expression of green fluorescent protein (GFP) is obtained in specific lineages. We also demonstrate its efficacy in an endogenous gene context: we inserted a flexon into the Argonaute gene rde-1 to abrogate RNA interference (RNAi), and restored RNAi tissue specifically by expression of Cre. Finally, we describe several potential additional applications of the Flexon approach, including more precise control of gene expression using intersectional methods, tissue-specific protein degradation, and generation of genetic mosaics. The Flexon approach should be feasible in any system where a site-specific recombination-based method may be applied.


Gene ◽  
2013 ◽  
Vol 515 (2) ◽  
pp. 367-371 ◽  
Author(s):  
Huiqing Yu ◽  
Xuebin Wang ◽  
Li Zhu ◽  
Zhuzi He ◽  
Guohui Liu ◽  
...  

1983 ◽  
Vol 258 (17) ◽  
pp. 10805-10811 ◽  
Author(s):  
M L Johnson ◽  
J Levy ◽  
S C Supowit ◽  
L Y Yu-Lee ◽  
J M Rosen

2006 ◽  
Vol 3 (9) ◽  
pp. 763-763
Author(s):  
Louis J Nkrumah ◽  
Rebecca A Muhle ◽  
Pedro A Moura ◽  
Pallavi Ghosh ◽  
Graham F Hatfull ◽  
...  

2009 ◽  
Vol 83 (23) ◽  
pp. 12512-12525 ◽  
Author(s):  
Nathalie Dutheil ◽  
Els Henckaerts ◽  
Erik Kohlbrenner ◽  
R. Michael Linden

ABSTRACT The nonpathogenic human adeno-associated virus type 2 (AAV-2) has adopted a unique mechanism to site-specifically integrate its genome into the human MBS85 gene, which is embedded in AAVS1 on chromosome 19. The fact that AAV has evolved to integrate into this ubiquitously transcribed region and that the chromosomal motifs required for integration are located a few nucleotides upstream of the translation initiation start codon of MBS85 suggests that the transcriptional activity of MBS85 might influence site-specific integration and thus might be involved in the evolution of this mechanism. In order to begin addressing this question, we initiated the characterization of the human MBS85 promoter region and compared its transcriptional activity to that of the AAV-2 p5 promoter. Our results clearly indicate that AAVS1 is defined by a complex transcriptional environment and that the MBS85 promoter shares key regulatory elements with the viral p5 promoter. Furthermore, we provide evidence for bidirectional MBS85 promoter activity and demonstrate that the minimal motifs required for AAV site-specific integration are present in the 5′ untranslated region of the gene and play a posttranscriptional role in the regulation of MBS85 expression. These findings should provide a framework to further elucidate the complex interactions between the virus and its cellular host in this unique pathway to latency.


2019 ◽  
Vol 55 (8) ◽  
pp. 586-597 ◽  
Author(s):  
Hongli Li ◽  
Zhipeng Li ◽  
Ning Xiao ◽  
Xiaoping Su ◽  
Shanshan Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document