scholarly journals 68. Physiological Regulation and Long Term Expression of the Low Density Lipoprotein Receptor Transgene In Vivo from Genomic DNA Mini-Gene Constructs

2009 ◽  
Vol 17 ◽  
pp. S29
FEBS Letters ◽  
1986 ◽  
Vol 196 (1) ◽  
pp. 87-90 ◽  
Author(s):  
Ralph V. Clayman ◽  
Lyman E. Bilhartz ◽  
David K. Spady ◽  
L.Maximilian Buja ◽  
John M. Dietschy

2018 ◽  
Author(s):  
Wei-Chun Chang ◽  
Hsiao-Ching Wang ◽  
Wei-Chung Cheng ◽  
Juan-Cheng Yang ◽  
Wei-Min Chung ◽  
...  

Platinum-based therapy remains the cornerstone for cancer patient management; however, its efficacy varies. This study demonstrated the differential expressions of low-density lipoprotein receptor (LDLR) in subtypes of epithelial ovarian carcinoma (EOC) determines cisplatin sensitivity. It's sensitive in serous EOCs (low LDLR), where insensitive in endometrioid and clear cell EOCs (high LDLR). Meanwhile, knocked-down or overexpressed LDLR in EOC could reversed the chemosensitivity pattern both in vitro and in vivo. Mechanistic dissection with transcriptome vs. lipidome trans-omics analyses elucidated the LDLR-->LPC (Lyso-PhosphotidylCholine)-->FAM83B (phospholipase-related)-->FGFRs (cisplatin sensitivity and phospholipase-related) regulatory axis in cisplatin insensitivity. Implementing LPC-liposome encapsulated cisplatin could facilitate DNA-adduct formation via lipid droplets (LDs) delivery. Furthermore, Bioinformatics analyses found that the LDL/R-->LD homeostasis alteration is critical for therapeutic prognosis. Lastly, using LPC-liposome-cisplatin improved cisplatin sensitivities in gastric cancer, renal cell carcinoma, hepatocellular carcinoma, cholangiocarcinoma, and pancreatic adenocarcinoma cells. In conclusion, this report discovered a LDL/R-reprogrammed transcriptome-lipidome network, by which impulses platinum insensitivity and disease outcome. The drug specific lipidome for liposome manufacture might be an efficienct pharmaceutics strategy for chemoagents.


2010 ◽  
Vol 298 (1) ◽  
pp. E68-E79 ◽  
Author(s):  
Huan Tao ◽  
Srikanth Aakula ◽  
Naji N. Abumrad ◽  
Tahar Hajri

Very-low-density lipoprotein receptor (VLDLR) is a member of the low-density receptor family, highly expressed in adipose tissue, heart, and skeletal muscle. It binds apolipoprotein E-triglyceride-rich lipoproteins and plays a significant role in triglyceride metabolism. PPARγ is a primary regulator of lipid metabolism in adipocytes and controls the expression of an array of genes involved in lipid trafficking in adipocytes. However, it is not known whether VLDLR is also under the control of PPARγ. In this study, we investigated the role of PPARγ in the regulation of VLDLR expression and function in vivo and in vitro. During the differentiation of 3T3-L1 preadipocytes, the levels of VLDLR protein and mRNA increased in parallel with the induction of PPARγ expression and reached maximum in mature adipocytes. Treatment of differentiated adipocytes with PPARγ agonist pioglitazone upregulated VLDLR expression in dose- and time-dependent manners. In contrast, specific inhibition of PPARγ significantly downregulated the protein level of VLDLR. Induction of VLDLR is also demonstrated in vivo in adipose tissue of wild-type (WT) mice treated with pioglitazone. In addition, pioglitazone increased plasma triglyceride-rich lipoprotein clearance and increased epididymal fat mass in WT mice but failed to induce similar effects in vldlr−/−mice. These results were further corroborated by the finding that pioglitazone treatment enhanced adipogenesis and lipid deposition in preadipocytes of WT mice, while its effect in VLDLR-null preadipocytes was significantly blunted. These findings provide direct evidence that VLDLR expression is regulated by PPARγ and contributes in lipid uptake and adipogenesis.


Sign in / Sign up

Export Citation Format

Share Document