cisplatin sensitivity
Recently Published Documents


TOTAL DOCUMENTS

500
(FIVE YEARS 197)

H-INDEX

37
(FIVE YEARS 10)

2022 ◽  
Vol 11 ◽  
Author(s):  
Chenming Zhong ◽  
Yiyao Dong ◽  
Qiudan Zhang ◽  
Chunhui Yuan ◽  
Shiwei Duan

miR-1301 is a newly discovered miRNA, which is abnormally expressed in 14 types of tumors. miR-1301 inhibits 23 target genes, forms a ceRNA network with 2 circRNAs and 8 lncRNAs, and participates in 6 signaling pathways, thereby affecting tumor cell proliferation, invasion, metastasis, apoptosis, angiogenesis, etc. Abnormal expression of miR-1301 is often associated with poor prognosis of cancer patients. In addition, miR-1301 is related to the anti-tumor effect of epirubicin on osteosarcoma and imatinib on chronic myeloid leukemia(CML) and can enhance the cisplatin sensitivity of ovarian cancer. This work systematically summarizes the abnormal expression and prognostic value of miR-1301 in a variety of cancers, depicts the miR-1301-related signaling pathways and ceRNA network, and provides potential clues for future miR-1301 research.


2021 ◽  
Vol 22 (24) ◽  
pp. 13324
Author(s):  
Watson P. Folk ◽  
Alpana Kumari ◽  
Tetsushi Iwasaki ◽  
Erica K. Cassimere ◽  
Slovénie Pyndiah ◽  
...  

The pro-apoptotic tumor suppressor BIN1 inhibits the activities of the neoplastic transcription factor MYC, poly (ADP-ribose) polymerase-1 (PARP1), and ATM Ser/Thr kinase (ATM) by separate mechanisms. Although BIN1 deficits increase cancer-cell resistance to DNA-damaging chemotherapeutics, such as cisplatin, it is not fully understood when BIN1 deficiency occurs and how it provokes cisplatin resistance. Here, we report that the coordinated actions of MYC, PARP1, and ATM assist cancer cells in acquiring cisplatin resistance by BIN1 deficits. Forced BIN1 depletion compromised cisplatin sensitivity irrespective of Ser15-phosphorylated, pro-apoptotic TP53 tumor suppressor. The BIN1 deficit facilitated ATM to phosphorylate the DNA-damage-response (DDR) effectors, including MDC1. Consequently, another DDR protein, RNF8, bound to ATM-phosphorylated MDC1 and protected MDC1 from caspase-3-dependent proteolytic cleavage to hinder cisplatin sensitivity. Of note, long-term and repeated exposure to cisplatin naturally recapitulated the BIN1 loss and accompanying RNF8-dependent cisplatin resistance. Simultaneously, endogenous MYC was remarkably activated by PARP1, thereby repressing the BIN1 promoter, whereas PARP inhibition abolished the hyperactivated MYC-dependent BIN1 suppression and restored cisplatin sensitivity. Since the BIN1 gene rarely mutates in human cancers, our results suggest that simultaneous inhibition of PARP1 and ATM provokes a new BRCAness-independent synthetic lethal effect and ultimately re-establishes cisplatin sensitivity even in platinum-refractory cancer cells.


2021 ◽  
Author(s):  
Dexiang Feng ◽  
Jiancheng Lv ◽  
Kai Li ◽  
Qiang Cao ◽  
Jie Han ◽  
...  

Abstract Circular RNAs (circRNAs) have been extensively studied in tumor development and treatment. CircZNF609 has been shown to act as an oncogene in a variety of solid tumors and may serve as a novel biomarker for tumor diagnosis and treatment. However, the underlying role and mechanism of circZNF609 in bladder cancer (BCa) development and cisplatin chemosensitivity were unknown. Quantitative real-time PCR (qRT-PCR) was applied to determine the expression of circZNF609, microRNA 1200 (miR-1200) and CDC25B in BCa cells and tissues. Western blot was used to detect the protein level of CDC25B. Functional assays in vitro and in vivo were conducted to investigate the effects of circZNF609 on tumor development and cisplatin chemosensitivity in BCa. RNA sequencing and online databases were used to predict the interactions among circZNF609, miR-1200 and CDC25B. Dual luciferase reporter assay, RNA pull-down assay and RNA fluorescence in situ hybridization (FISH) were applied to confirm the mechanism. CircZNF609 expression was significantly up-regulated in BCa cell lines and tissues. Increased expression of circZNF609 was related to a worse survival in BCa patients. In vitro and in vivo, enforced-expression of circZNF609 enhanced BCa cells proliferation, migration and cisplatin chemoresistance. Mechanistically, circZNF609 alleviated the inhibition effect on target CDC25B expression by sponging miR-1200. CircZNF609 promoted tumor growth through novel circZNF609/miR-1200/CDC25B axis, implying that circZNF609 has significant potential to serve as a new diagnostic biomarker and therapeutic target for BCa patients.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Shenglong Li ◽  
Fei Liu ◽  
Ke Zheng ◽  
Wei Wang ◽  
Enduo Qiu ◽  
...  

Abstract Background Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Methods Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT–PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. Results CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. Conclusions CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Gonghua Qi ◽  
Hanlin Ma ◽  
Yingwei Li ◽  
Jiali Peng ◽  
Jingying Chen ◽  
...  

AbstractHigh-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy. However, the molecular mechanisms underlying HGSOC development, progression, chemotherapy insensitivity and resistance remain unclear. Two independent GEO datasets, including the gene expression profile of primary ovarian carcinoma and normal controls, were analyzed to identify genes related to HGSOC development and progression. A KEGG pathway analysis of the differentially expressed genes (DEGs) revealed that the cell cycle pathway was the most enriched pathway, among which TTK protein kinase (TTK) was the only gene with a clinical-grade inhibitor that has been investigated in a clinical trial but had not been studied in HGSOC. TTK was also upregulated in cisplatin-resistant ovarian cancer cells from two other datasets. TTK is a regulator of spindle assembly checkpoint signaling, playing an important role in cell cycle control and tumorigenesis in various cancers. However, the function and regulatory mechanism of TTK in HGSOC remain to be determined. In this study, we observed TTK upregulation in patients with HGSOC. High TTK expression was related to a poor prognosis. Genetic and pharmacological inhibition of TTK impeded the proliferation of ovarian cancer cells by disturbing cell cycle progression and increasing apoptosis. TTK silencing increased cisplatin sensitivity by activating the mammalian target of rapamycin (mTOR) complex to further suppress cisplatin-induced autophagy in vitro. In addition, the enhanced sensitivity was partially diminished by rapamycin-mediated inhibition of mTOR in TTK knockdown cells. Furthermore, TTK knockdown increased the toxicity of cisplatin in vivo by decreasing autophagy. These findings suggest that the administration of TTK inhibitors in combination with cisplatin may lead to improved response rates to cisplatin in patients with HGSOC presenting high TTK expression. In summary, our study may provide a theoretical foundation for using the combination therapy of cisplatin and TTK inhibitors as a treatment for HGSOC in the future.


Author(s):  
Zhenchuan Liu ◽  
Shaorui Gu ◽  
Kaiqin Wu ◽  
Lei Li ◽  
Chenglai Dong ◽  
...  

Abstract Background Cisplatin-based chemotherapy is a mainstay systematic therapy for advanced esophageal squamous cell carcinoma (ESCC), and cisplatin resistance, which is not uncommon, is the major barrier to improving patient outcomes. Circular RNAs (circRNAs) are novel noncoding RNAs that are implicated in cancer progression, but their involvement in modulating cisplatin responsiveness in ESCC remains unknown. Methods Bioinformatics analysis was used to profile and identify the circRNAs involved in cisplatin responsiveness in ESCC. The chemosensitive role of cDOPEY2 was confirmed both in vitro and in vivo. The molecular mechanism of cDOPEY2 was investigated by mass spectrometry, immunoprecipitation, and ubiquitination analyses. Results We report that a novel circRNA (cDOPYE2, hsa_circ_0008078) was markedly downregulated in cisplatin-resistant ESCC cells (ESCC-CR) compared with parental chemosensitive cells. Re-expression of cDOPEY2 substantially enhanced the cell-killing ability of cisplatin by augmenting the apoptotic process in ESCC-CR cells, which was achieved by decreasing the abundance of the antiapoptotic protein Mcl-1. Mechanistically, we showed that cDOPEY2 acted as a protein scaffold to enhance the interaction between the cytoplasmic polyadenylation element binding protein (CPEB4) and the E3 ligase TRIM25, which in turn facilitated the ubiquitination and degradation of CPEB4. The increased Mcl-1 expression in ESCC-CR cells was dependent on the binding of CPEB4 to its untranslated mRNA, and depletion of CPEB4 mediated by cDOPEY2 reversed this effect. Rescue experiments confirmed that the critical role of cDOPEY2 in maintaining cisplatin sensitivity was dependent on the depletion of CEPB4 and its downstream target Mcl-1. Clinical and in vivo data further corroborated the significant relevance of cDOPEY2 to cisplatin responsiveness in ESCC. Conclusions We provide evidence that cDOPEY2 inhibits CPEB4-mediated Mcl-1 translation by promoting the ubiquitination and degradation of CPEB4 to alleviate cisplatin resistance, indicating that cDOPEY2 may serve as a valuable biomarker and potential therapeutic target in ESCC.


2021 ◽  
Author(s):  
Jessica A Scarborough ◽  
Steven A Eschrich ◽  
Javier Torres-Roca ◽  
Andrew Dhawan ◽  
Jacob G Scott

Precision medicine offers remarkable potential for the treatment of cancer, but is largely focused on tumors that harbor actionable mutations. Gene expression signatures can expand the scope of precision medicine by predicting response to traditional(cytotoxic) chemotherapy agents without relying on changes in mutational status. We present a novel signature extraction method, inspired by the principle of convergent evolution, which states that tumors with disparate genetic backgrounds may evolve similar phenotypes independently. This evolutionary-informed method can be utilized to produce signatures predictive of response to over 200 chemotherapeutic drugs found in the Genomics of Drug Sensitivity in Cancer Database. Here, we demonstrate its use by extracting the Cisplatin Response Signature, CisSig, for use in predicting a common trait (sensitivity to cisplatin) across disparate tumor subtypes (epithelial-origin tumors). CisSig is predictive of cisplatin response within the cell lines and clinical trends in independent datasets of tumor samples. This novel methodology can be used to produce robust signatures for the prediction of traditional chemotherapeutic response, dramatically increasing the reach of personalized medicine in cancer.


Sign in / Sign up

Export Citation Format

Share Document