An analysis of elasto-plastic strains and stresses in notched bodies subjected to cyclic non-proportional loading paths

Author(s):  
Andrzej Buczynski ◽  
Grzegorz Glinka
1966 ◽  
Vol 33 (2) ◽  
pp. 282-288 ◽  
Author(s):  
M. J. Hillier

The stress ratios, loads, and plastic strains at instability are calculated for a flat metal sheet subjected to the following loading paths: (a) Proportional stressing, (b) sequential loading, and (c) proportional loading.


2018 ◽  
Vol 9 ◽  
pp. 136-150 ◽  
Author(s):  
Riccardo Fincato ◽  
Seiichiro Tsutsumi ◽  
Hideto Momii

2007 ◽  
Vol 567-568 ◽  
pp. 141-144 ◽  
Author(s):  
Pierre Evrard ◽  
Veronique Aubin ◽  
Suzanne Degallaix ◽  
Djimedo Kondo

In order to model the elasto-viscoplastic behaviour of an austenitic-ferritic stainless steel, the model initially developed by Cailletaud-Pilvin [1] [2] and used for modeling single-phase polycrystalline steel is extended in order to take into account the bi-phased character of a duplex steel. Two concentration laws and two local constitutive laws, based on the crystallographic slips and the dislocation densities, are thus simultaneously considered. The model parameters are identified by an inverse method. Simple tests among which tension test at constant strain rate and at different strain rates and uniaxial tension-compression test are used during the identification step. The predictive capabilities of the polycrystalline model are tested for non-proportional loading paths. It is shown that the model reproduces the over-hardening experimentally observed for this kind of loading paths. Then, yield surfaces are simulated during a uniaxial tension-compression test: it is shown that the distortion (i.e. plastic anisotropy induced by loading path) is correctly described.


2019 ◽  
Vol 87 (3) ◽  
Author(s):  
Lars Edvard Blystad Dæhli ◽  
David Morin ◽  
Tore Børvik ◽  
Ahmed Benallal ◽  
Odd Sture Hopperstad

Abstract This work examines the effects of loading rate on the plastic flow and ductile failure of porous solids exhibiting rate-dependent behavior relevant to many structural metals. Two different modeling approaches for ductile failure are employed and numerical analyses are performed over a wide range of strain rates. Finite element unit cell simulations are carried out to evaluate the macroscopic mechanical response and ductile failure by void coalescence for various macroscopic strain rates. The unit cell results are then used to assess the accuracy of a rate-dependent porous plasticity model, which is subsequently used in strain localization analyses based on the imperfection band approach. Strain localization analyses are conducted for (i) proportional loading paths and (ii) non-proportional loading paths obtained from finite element simulations of axisymmetric and flat tensile specimens. The effects of strain rate are most apparent on the stress–strain response, whereas the effects of strain rate on ductile failure is found to be small for the adopted rate-dependent constitutive model. However, the rate-dependent constitutive formulation tends to regularize the plastic strain field when the strain rate increases. In the unit cell simulations, this slightly increases the strain at coalescence with increasing strain rate compared to a rate-independent constitutive formulation. When the strain rate is sufficiently high, the strain at coalescence becomes constant. The strain localization analyses show a negligible effect of strain rate under proportional loading, while the effect of strain rate is more pronounced when non-proportional loading paths are assigned.


Sign in / Sign up

Export Citation Format

Share Document