biaxial experiments
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
M. Brünig ◽  
S. Koirala ◽  
S. Gerke

Abstract Background Dependence of strength and failure behavior of anisotropic ductile metals on loading direction and on stress state has been indicated by many experiments. To realistically predict safety and lifetime of structures these effects must be taken into account in material models and numerical analysis. Objective The influence of stress state and loading direction on damage and failure behavior of the anisotropic aluminum alloy EN AW-2017A is investigated. Methods New biaxial experiments and numerical simulations have been performed with the H-specimen under different load ratios. Digital image correlation shows evolution of strain fields and scanning electron microscopy is used to visualize failure modes on fracture surfaces. Corresponding numerical studies predict stress states to explain damage and fracture processes on the micro-scale. Results The stress state, the load ratio and the loading direction with respect to the principal axes of anisotropy affect the width and orientation of localized strain fields and the formation of damage mechanisms and fracture modes at the micro-level. Conclusions The enhanced experimental program with biaxial tests considering different loading directions and load ratios is suggested for characterization of anisotropic metals.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 79
Author(s):  
Ankush Aggarwal ◽  
Damiano Lombardi ◽  
Sanjay Pant

A new framework for optimal design based on the information-theoretic measures of mutual information, conditional mutual information and their combination is proposed. The framework is tested on the analysis of protocols—a combination of angles along which strain measurements can be acquired—in a biaxial experiment of soft tissues for the estimation of hyperelastic constitutive model parameters. The proposed framework considers the information gain about the parameters from the experiment as the key criterion to be maximised, which can be directly used for optimal design. Information gain is computed through k-nearest neighbour algorithms applied to the joint samples of the parameters and measurements produced by the forward and observation models. For biaxial experiments, the results show that low angles have a relatively low information content compared to high angles. The results also show that a smaller number of angles with suitably chosen combinations can result in higher information gains when compared to a larger number of angles which are poorly combined. Finally, it is shown that the proposed framework is consistent with classical approaches, particularly D-optimal design.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jan Liedmann ◽  
Steffen Gerke ◽  
Franz-Joseph Barthold ◽  
Michael Brünig

Author(s):  
Michael Brünig ◽  
Marco Schmidt ◽  
Steffen Gerke

Abstract The paper deals with a numerical model to investigate the influence of stress state on damage and failure in the ductile steel X5CrNi18-10. The numerical analysis is based on an anisotropic continuum damage model taking into account yield and damage criteria as well as evolution equations for plastic and damage strain rate tensors. Results of numerical simulations of biaxial experiments with the X0- and the H-specimen presented. In the experiments, formation of strain fields are monitored by digital image correlation which can be compared with numerically predicted ones to validate the numerical model. Based on the numerical analysis the strain and stress quantities in selected parts of the specimens are predicted. Analysis of damage strain variables enables prediction of fracture lines observed in the tests. Stress measures are used to explain different stress-state-dependent damage and failure mechanisms on the micro-level visualized on fracture surfaces by scanning electron microscopy.


2019 ◽  
Vol 14 (1) ◽  
pp. 87-93
Author(s):  
Michael Brünig ◽  
Moritz Zistl ◽  
Steffen Gerke

2019 ◽  
Vol 300 ◽  
pp. 02001
Author(s):  
David Nowell ◽  
João Vitor Sahadi Cavalheiro

The paper will consider a set of biaxial experiments, conducted using a cruciform specimen design, manufactured from Waspaloy, a nickel superalloy used in aircraft engine disks. These are analysed using a number of standard, as well as novel, multiaxial fatigue parameters. The results show that most of the existing parameters appear to correlate the results adequately in the region which can be accessed by tension-torsion experiments, but are much less convincing outside this range. A number of potential alternative approaches will be discussed and compared with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document