4P-1042 Inhibitory effect of dietary restriction on endothelial nitric oxide synthase expression and function

2003 ◽  
Vol 4 (2) ◽  
pp. 303
Author(s):  
J. Sato ◽  
T. O'Brien
1997 ◽  
Vol 80 (3) ◽  
pp. 327-335 ◽  
Author(s):  
Alex F.Y. Chen ◽  
Timothy O’Brien ◽  
Masato Tsutsui ◽  
Hiroyuki Kinoshita ◽  
Vincent J. Pompili ◽  
...  

2011 ◽  
Vol 210 (3) ◽  
pp. 239-241 ◽  
Author(s):  
Ian M Bird

The principle mechanisms operating at the level of endothelial nitric oxide synthase (eNOS) itself to control its activity are phosphorylation, the auto-regulatory properties of the protein itself, and Ca2+/calmodulin binding. It is now clear that activation of eNOS is greatest when phosphorylation of certain serine and threonine residues is accompanied by elevation of cytosolic [Ca2+]i. While eNOS also contains an autoinhibitory loop, Rafikov et al. (2011) present the evidence for a newly identified ‘flexible arm’ that operates in response to redox state. Boeldt et al. (2011) also review the evidence that changes in the nature of endothelial Ca2+ signaling itself in different physiologic states can extend both the amplitude and duration of NO output, and a failure to change these responses in pregnancy is associated with preeclampsia. The change in Ca2+ signaling is mediated through altering capacitative entry mechanisms inherent in the cell, and so many agonist responses using this mechanism are altered. The term ‘adaptive cell signaling’ is also introduced for the first time to describe this phenomenon. Finally NO is classically regarded as a regulator of vascular function, but NO has other actions. One proposed role is regulation of steroid biosynthesis but the physiologic relevance was unclear. Ducsay & Myers (2011) now present new evidence that NO may provide the adrenal with a mechanism to regulate cortisol output according to exposure to hypoxia. One thing all three of these reviews show is that even after several decades of study into NO biosynthesis and function, there are clearly still many things left to discover.


2016 ◽  
Vol 310 (1) ◽  
pp. L40-L49 ◽  
Author(s):  
Adeleye J. Afolayan ◽  
Annie Eis ◽  
Maxwell Alexander ◽  
Teresa Michalkiewicz ◽  
Ru-Jeng Teng ◽  
...  

Impaired vasodilation in persistent pulmonary hypertension of the newborn (PPHN) is characterized by mitochondrial dysfunction. We investigated the hypothesis that a decreased endothelial nitric oxide synthase level leads to impaired mitochondrial biogenesis and function in a lamb model of PPHN induced by prenatal ductus arteriosus constriction. We ventilated PPHN lambs with 100% O2 alone or with inhaled nitric oxide (iNO). We treated pulmonary artery endothelial cells (PAECs) from normal and PPHN lambs with detaNONOate, an NO donor. We observed decreased mitochondrial (mt) DNA copy number, electron transport chain (ETC) complex subunit levels, and ATP levels in PAECs and lung tissue of PPHN fetal lambs at baseline compared with gestation matched controls. Phosphorylation of AMP-activated kinase (AMPK) and levels of peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) and sirtuin-1, which facilitate mitochondrial biogenesis, were decreased in PPHN. Ventilation with 100% O2 was associated with larger decreases in ETC subunits in the lungs of PPHN lambs compared with unventilated PPHN lambs. iNO administration, which facilitated weaning of FiO2, partly restored mtDNA copy number, ETC subunit levels, and ATP levels. DetaNONOate increased eNOS phosphorylation and its interaction with heat shock protein 90 (HSP90); increased levels of superoxide dismutase 2 (SOD2) mRNA, protein, and activity; and decreased the mitochondrial superoxide levels in PPHN-PAECs. Knockdown of eNOS decreased ETC protein levels in control PAECs. We conclude that ventilation with 100% O2 amplifies oxidative stress and mitochondrial dysfunction in PPHN, which are partly improved by iNO and weaning of oxygen.


Sign in / Sign up

Export Citation Format

Share Document