Indoor radon long-term variation assessment

Author(s):  
I.V. Yarmoshenko ◽  
Z.S. Zunic ◽  
J.P. McLaughlin ◽  
J. Paridaens ◽  
I.A. Kirdin ◽  
...  
2021 ◽  
Vol 13 (16) ◽  
pp. 3116
Author(s):  
Chunlin Huang ◽  
Junzhang Li ◽  
Weiwei Sun ◽  
Qixiang Chen ◽  
Qian-Jun Mao ◽  
...  

Long-term (2000–2019) assessment of aerosol loads and dominant aerosol types at spatiotemporal scales using multi-source datasets can provide a strong impetus to the investigation of aerosol loads and to the targeted prevention control of atmospheric pollution in densely populated regions with frequent anthropogenic activities and heavy aerosol emissions. This study uses multi-source aerosol datasets, including Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2), Moderate Resolution Imaging Spectroradiometer (MODIS), and Aerosol Robotic Network (AERONET), to conduct a long-term variation assessment of aerosol load, high aerosol load frequency, and dominant aerosol types over Asia. The results indicate that regional aerosol type information with adequate spatial resolution can be combined with aerosol optical depth (AOD) values and heavy aerosol load frequency characterization results to explore the key contributors to air pollution. During the study period, the aerosol load over the North China Plain, Central China, Yangtze River Delta, Red River Delta, Sichuan Basin, and Pearl River Delta exhibited an increasing trend from 2000–2009 due to a sharp rise in aerosol emissions with economic development and a declining trend from 2010–2019 under stricter energy conservation controls and emissions reductions. The growth of urban/industrial (UI) type and biomass burning (BB) type aerosol emissions hindered the improvement of the atmospheric environment. Therefore, in future pollution mitigation efforts, focus should be on the control of UI-type and BB-type aerosol emissions. The Indus–Ganges River Plain, Deccan Plateau, and Eastern Ghats show a continuously increasing trend; however, the aerosol load growth rate of the last decade was lower than that of the first decade, which was mainly due to the decrease in the proportion of the mixed type aerosols.


2021 ◽  
Vol 80 (17) ◽  
Author(s):  
G. Romero-Mujalli ◽  
A. Roisenberg ◽  
A. Cordova-Gonzalez ◽  
P. H. P. Stefano

AbstractRadon (Rn), a radioactive element, has especial interest in medical geology because long-term exposure to high concentration is related to lung cancer. In this study, outdoor and indoor radon measurements were conducted in dwellings of the Piquiri Syenite Massif, located in southern Brazil, given the relative high Rn content in soils of this region. Measurements were done using CR-39 detectors and placing them inside and outside dwellings. Moreover, a one-dimensional diffusion model was performed in order to quantify the natural transport of Rn to the air in confined and aerated environments. Results indicate that the region presents relatively low air Rn concentrations, within the environmental limits; however, the health risk might increase in confined and ill-ventilated environments because of transfer from soil and exhalation from ornamental rock-material often found inside dwellings. The main north facies of the syenite, where most of the rock extractions are located, was found to have the highest air Rn concentration because of the higher soil Rn concentration, compared to other facies of the syenite.


GPS Solutions ◽  
2015 ◽  
Vol 20 (3) ◽  
pp. 313-319 ◽  
Author(s):  
Jiahao Zhong ◽  
Jiuhou Lei ◽  
Xiankang Dou ◽  
Xinan Yue

Sign in / Sign up

Export Citation Format

Share Document