EXTRACELLULAR MATRIX MODIFICATIONS IN THE HYPERPLASTIC PROSTATE AS COMPARED WITH THE TRANSITIONAL ZONE OF THE NORMAL GLAND

2008 ◽  
Vol 7 (3) ◽  
pp. 94
Author(s):  
M.C. Dornas ◽  
F.J.B. Sampaio ◽  
L.E.M. Cardoso
2003 ◽  
Vol 376 (1) ◽  
pp. 219-227 ◽  
Author(s):  
Alan A. WOODS ◽  
Michael J. DAVIES

The interaction of extracellular matrix with cells regulates their adhesion, migration and proliferation, and it is believed that damage to vascular matrix components is a factor in the development of atherosclerosis. Evidence has been provided for a role for the haem enzyme MPO (myeloperoxidase), released by activated monocytes (and possibly macrophages), in oxidative events within the artery wall. As MPO is released extracellularly, and is highly basic, it might be expected to associate with poly-anionic matrix components thereby localizing damage to these materials. In this study the reaction of the MPO-derived oxidant hypochlorous acid (HOCl) with extracellular matrix from vascular smooth muscle cells and healthy pig arteries has been examined. HOCl is rapidly consumed by such matrix samples, with the formation of matrix-derived chloramines or chloramides. The yield of these intermediates increases with HOCl dose. These materials undergo a time- and temperature-dependent decay, which parallels the release of sugar and protein components from the treated matrix, consistent with these species being important intermediates. Matrix damage is enhanced by species that increase chloramine/chloramide decomposition, with copper and iron ions being effective catalysts, and decreased by compounds which scavenge chloramines/chloramides, or species derived from them. The effect of such matrix modifications on cellular behaviour is poorly understood, though it is known that changes in matrix materials can have profound effects on cell adhesion, proliferation, growth and phenotype. The observed matrix modifications reported here may therefore modulate cellular behaviour in diseases such as atherosclerosis where MPO-derived oxidants are generated.


Matrix ◽  
1993 ◽  
Vol 13 (6) ◽  
pp. 481-490 ◽  
Author(s):  
Daniela Quaglino ◽  
Claudio Fornieri ◽  
Lillian B. Nanney ◽  
Jeffrey M. Davidson

Author(s):  
J.Y. Laval

The exsolution of magnetite from a substituted Yttrium Iron Garnet, containing an iron excess may lead to a transitional event. This event is characterized hy the formation of a transitional zone at the center of which the magnetite nucleates (Fig.1). Since there is a contrast between the matrix and these zones and since selected area diffraction does not show any difference between those zones and the matrix in the reciprocal lattice, it is of interest to analyze the structure of the transitional zones.By using simultaneously different techniques in electron microscopy, (oscillating crystal method microdiffraction and X-ray microanalysis)one may resolve the ionic process corresponding to the transitional event and image this event subsequently by high resolution technique.


Author(s):  
L. Terracio ◽  
A. Dewey ◽  
K. Rubin ◽  
T.K. Borg

The recognition and interaction of cells with the extracellular matrix (ECM) effects the normal physiology as well as the pathology of all multicellular organisms. These interactions have been shown to influence the growth, development, and maintenance of normal tissue function. In previous studies, we have shown that neonatal cardiac myocytes specifically interacts with a variety of ECM components including fibronectin, laminin, and collagens I, III and IV. Culturing neonatal myocytes on laminin and collagen IV induces an increased rate of both cell spreading and sarcomerogenesis.


Author(s):  
J. Roemer ◽  
S.R. Simon

We are developing an in vitro interstitial extracellular matrix (ECM) system for study of inflammatory cell migration. Falcon brand Cyclopore membrane inserts of various pore sizes are used as a support substrate for production of ECM by R22 rat aortic smooth muscle cells. Under specific culture conditions these cells produce a highly insoluble matrix consisting of typical interstitial ECM components, i.e.: types I and III collagen, elastin, proteoglycans and fibronectin.


Sign in / Sign up

Export Citation Format

Share Document