Modelling Three Phase Hydro-Mechanical Coupling in Porous Media: Application to a Real Scale Experiment

Author(s):  
Georg Klubertanz ◽  
Jean Croisé ◽  
Michel de Combarieu ◽  
Ken Ando
Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


1997 ◽  
Vol 66 (1-2) ◽  
pp. 57-88 ◽  
Author(s):  
Mazen Saad ◽  
J.B. Bell ◽  
J.A. Trangenstein ◽  
G.R. Schubin ◽  
A. Harten ◽  
...  

SPE Journal ◽  
2017 ◽  
Vol 22 (05) ◽  
pp. 1506-1518 ◽  
Author(s):  
Pedram Mahzari ◽  
Mehran Sohrabi

Summary Three-phase flow in porous media during water-alternating-gas (WAG) injections and the associated cycle-dependent hysteresis have been subject of studies experimentally and theoretically. In spite of attempts to develop models and simulation methods for WAG injections and three-phase flow, current lack of a solid approach to handle hysteresis effects in simulating WAG-injection scenarios has resulted in misinterpretations of simulation outcomes in laboratory and field scales. In this work, by use of our improved methodology, the first cycle of the WAG experiments (first waterflood and the subsequent gasflood) was history matched to estimate the two-phase krs (oil/water and gas/oil). For subsequent cycles, pertinent parameters of the WAG hysteresis model are included in the automatic-history-matching process to reproduce all WAG cycles together. The results indicate that history matching the whole WAG experiment would lead to a significantly improved simulation outcome, which highlights the importance of two elements in evaluating WAG experiments: inclusion of the full WAG experiments in history matching and use of a more-representative set of two-phase krs, which was originated from our new methodology to estimate two-phase krs from the first cycle of a WAG experiment. Because WAG-related parameters should be able to model any three-phase flow irrespective of WAG scenarios, in another exercise, the tuned parameters obtained from a WAG experiment (starting with water) were used in a similar coreflood test (WAG starting with gas) to assess predictive capability for simulating three-phase flow in porous media. After identifying shortcomings of existing models, an improved methodology was used to history match multiple coreflood experiments simultaneously to estimate parameters that can reasonably capture processes taking place in WAG at different scenarios—that is, starting with water or gas. The comprehensive simulation study performed here would shed some light on a consolidated methodology to estimate saturation functions that can simulate WAG injections at different scenarios.


2013 ◽  
Author(s):  
Mayur Pal ◽  
Sadok Lamine ◽  
Knut-Andreas Lie ◽  
Stein Krogstad

Sign in / Sign up

Export Citation Format

Share Document