wetting transitions
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 12)

H-INDEX

45
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Matthew Trapuzzano ◽  
Rasim Guldiken ◽  
Andres Tejada-Martinez ◽  
Nathan Crane

2021 ◽  
Vol 120 (3) ◽  
pp. 194a
Author(s):  
Rachel J. Dotson ◽  
Nelli Mnatsakanyan ◽  
Elizabeth A. Jonas ◽  
Sally C. Pias

2020 ◽  
Vol 25 ◽  
pp. 101650
Author(s):  
Zhixiong Song ◽  
Eric Shen Lin ◽  
Md. Hemayet Uddin ◽  
Jian Wern Ong ◽  
Hassan Ali Abid ◽  
...  

2020 ◽  
Vol 129 (1) ◽  
pp. 16002 ◽  
Author(s):  
M. Napiórkowski ◽  
L. Schimmele ◽  
S. Dietrich
Keyword(s):  

RSC Advances ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 1120-1126 ◽  
Author(s):  
Libing Duan ◽  
Xiangyang Ji ◽  
Yajie Yang ◽  
Sihang Yang ◽  
Xinjun Lv ◽  
...  

Smart surfaces promote the fundamental understanding of wetting and are widely used in practical applications for energy and water collection.


2019 ◽  
Vol 116 (48) ◽  
pp. 23901-23908 ◽  
Author(s):  
Robert Evans ◽  
Maria C. Stewart ◽  
Nigel B. Wilding

Clarifying the factors that control the contact angle of a liquid on a solid substrate is a long-standing scientific problem pertinent across physics, chemistry, and materials science. Progress has been hampered by the lack of a comprehensive and unified understanding of the physics of wetting and drying phase transitions. Using various theoretical and simulational techniques applied to realistic fluid models, we elucidate how the character of these transitions depends sensitively on both the range of fluid–fluid and substrate–fluid interactions and the temperature. Our calculations uncover previously unrecognized classes of surface phase diagram which differ from that established for simple lattice models and often assumed to be universal. The differences relate both to the topology of the phase diagram and to the nature of the transitions, with a remarkable feature being a difference between drying and wetting transitions which persists even in the approach to the bulk critical point. Most experimental and simulational studies of liquids at a substrate belong to one of these previously unrecognized classes. We predict that while there appears to be nothing particularly special about water with regard to its wetting and drying behavior, superhydrophobic behavior should be more readily observable in experiments conducted at high temperatures than at room temperature.


Sign in / Sign up

Export Citation Format

Share Document