scholarly journals Efficacy of Bacillus subtilis MBI 600 Against Sheath Blight Caused by Rhizoctonia solani and on Growth and Yield of Rice

Rice Science ◽  
2012 ◽  
Vol 19 (1) ◽  
pp. 55-63 ◽  
Author(s):  
K. VIJAY KRISHNA KUMAR ◽  
S. KR. YELLAREDDYGARI ◽  
M.S. REDDY ◽  
J.W. KLOEPPER ◽  
K.S. LAWRENCE ◽  
...  
2016 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Amran Muis ◽  
Arcadio J. Quimio

Rhizoctonia solani Kuhn. causing banded leaf and sheath blight diseases is one of the important fungi of corn world wide. The fungus is commonly controlled by using fungicide because no resistant variety available. The objective of the study was to develop a seed treatment formulation of the selected Bacillus subtilis to control R. solani in corn. The study was conducted in the Department of Plant Pathology, College of Agriculture, University of the Philippines Los Bañòs, College, Laguna from May 2004 to August 2005, using sweet corn var. IPB Supersweet as test plant. Corn seeds were surface sterilized for 10 minutes in 1% sodium hypochlorite solution and 5% ethanol, washed thrice with sterile distilled water and air-dried. The seeds were coated with formulated B. subtilis BR23 and used for several experiments, such as evaluation for their germination and growth in the laboratory, effectively on R. solani in the baked and nonbaked field soil under greenhouse condition, and in the microplots artificially infested with R. solani. The treatment was compared with other standard seed treatment of synthetic fungicides such as captan (10 g per kg seeds) and metalaxyl (10 g per kg seeds). The experiments were designed in a completely random design with three replications. Parameters observed were seed germination, plant height, disease scores, and plant yield. Laboratory formulated B. subtilis BR23 used as seed treatment had no detrimental effects on seed germination and seedling vigor. In microplots artificially infested with a selected highly virulent R. solani, seed treatment with the same formulation increased grain yield by 27% compared to that of the control captan seed treatment with 14.4%. The studies showed the potential of B. subtilis BR23 for commercialization as a seed treatment for the control of banded leaf and sheath blight disease (R. solani) in corn.


2016 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Amran Muis ◽  
Arcadio J. Quimio

Rhizoctonia solani Kuhn. causing banded leaf and sheath blight diseases is one of the important fungi of corn world wide. The fungus is commonly controlled by using fungicide because no resistant variety available. The objective of the study was to develop a seed treatment formulation of the selected Bacillus subtilis to control R. solani in corn. The study was conducted in the Department of Plant Pathology, College of Agriculture, University of the Philippines Los Bañòs, College, Laguna from May 2004 to August 2005, using sweet corn var. IPB Supersweet as test plant. Corn seeds were surface sterilized for 10 minutes in 1% sodium hypochlorite solution and 5% ethanol, washed thrice with sterile distilled water and air-dried. The seeds were coated with formulated B. subtilis BR23 and used for several experiments, such as evaluation for their germination and growth in the laboratory, effectively on R. solani in the baked and nonbaked field soil under greenhouse condition, and in the microplots artificially infested with R. solani. The treatment was compared with other standard seed treatment of synthetic fungicides such as captan (10 g per kg seeds) and metalaxyl (10 g per kg seeds). The experiments were designed in a completely random design with three replications. Parameters observed were seed germination, plant height, disease scores, and plant yield. Laboratory formulated B. subtilis BR23 used as seed treatment had no detrimental effects on seed germination and seedling vigor. In microplots artificially infested with a selected highly virulent R. solani, seed treatment with the same formulation increased grain yield by 27% compared to that of the control captan seed treatment with 14.4%. The studies showed the potential of B. subtilis BR23 for commercialization as a seed treatment for the control of banded leaf and sheath blight disease (R. solani) in corn.


2013 ◽  
Vol 7 (19) ◽  
pp. 2078-2086 ◽  
Author(s):  
Vijay Krishna Kumar K ◽  
KR Yellareddygari S ◽  
S Reddy M ◽  
W Kloepper J ◽  
S Lawrence K ◽  
...  

2019 ◽  
Vol 60 (3) ◽  
pp. 268-280 ◽  
Author(s):  
Hena Jamali ◽  
Anjney Sharma ◽  
Roohi ◽  
Alok Kumar Srivastava

2021 ◽  
Author(s):  
Jagjeet S. Lore ◽  
Jyoti Jain ◽  
Mandeep S. Hunjan ◽  
Ishwinder Kamboj ◽  
Najam W. Zaidi ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Sy Dinh Nguyen ◽  
Thi Huyen Trang Trinh ◽  
Trung Dzung Tran ◽  
Tinh Van Nguyen ◽  
Hoang Van Chuyen ◽  
...  

Black pepper (Piper nigrum L.) is one of the most important crops and global demand continues to increase, giving it a high export value. However, black pepper cultivation has been seriously affected by a number of pathogenic diseases. Among them, “quick wilt” caused by Phytophthora sp., “slow decline” caused by Fusarium sp., and root-knot nematode Meloidogyne sp. have a serious negative effect on black pepper growth and productivity. There have been different chemical and biological methods applied to control these diseases, but their effectiveness has been limited. The aim of this research was to evaluate different combinations of rhizosphere bacteria and endophytic bacteria isolated from black pepper farms in the Central Highland of Vietnam for their ability to suppress pathogens and promote black pepper growth and yield. Formula 6, containing the strains Bacillus velezensis KN12, Bacillus amyloliquefaciens DL1, Bacillus velezensis DS29, Bacillus subtilis BH15, Bacillus subtilis V1.21 and Bacillus cereus CS30 exhibited the largest effect against Phytophthora and Fusarium in the soil and in the roots of black pepper. These bio-products also increased chlorophyll a and b contents, which led to a 1.5-fold increase of the photosynthetic intensity than the control formula and a 4.5% increase in the peppercorn yield (3.45 vs. 3.30 tons per hectare for the control). Our results suggest that the application of rhizosphere and endophytic bacteria is a promising method for disease control and growth-promotion of black pepper.


Sign in / Sign up

Export Citation Format

Share Document